
When the world is not
enough.

When the world is not
enough.

Aka: Not cool enough to use an iPad to present from.

When the world is not
enough.

Aka: Not cool enough to use an iPad to present from.
Aka: The mistakes we’ve made and will continue to make.

When the world is not
enough.

Aka: Not cool enough to use an iPad to present from.
Aka: The mistakes we’ve made and will continue to make.

Aka: We think we’re pretty darn clever, but...

When the world is not
enough.

Jake Carroll, Senior IT Manager
The Queensland Brain Institute, UQ

Aka: Not cool enough to use an iPad to present from.
Aka: The mistakes we’ve made and will continue to make.

Aka: We think we’re pretty darn clever, but...

• The least technical presentation I’ve ever
given!

• The least technical presentation I’ve ever
given!

• This isn’t about technology in the most
blatant sense. This is the story of what we
think we know about it, and how fragile
what we think we know really is.

• The least technical presentation I’ve ever
given!

• This isn’t about technology in the most
blatant sense. This is the story of what we
think we know about it, and how fragile
what we think we know really is.

• I hope it just helps people look at things
slightly differently, if nothing else.

• The least technical presentation I’ve ever
given!

• This isn’t about technology in the most
blatant sense. This is the story of what we
think we know about it, and how fragile
what we think we know really is.

• I hope it just helps people look at things
slightly differently, if nothing else.

• Nothing comfortable about this zone.

Episode 1

Episode 1

• A researcher and trusted colleague came
to me and said “I need you to build me a new
specialised HPC system”...

Episode 1

• A researcher and trusted colleague came
to me and said “I need you to build me a new
specialised HPC system”...

• I said: “OK. Believe it or not, I can do that”.

Episode 2

Episode 2

• We talked details:

Episode 2

• We talked details:

• workload types

Episode 2

• We talked details:

• workload types

• floating point performance,

Episode 2

• We talked details:

• workload types

• floating point performance,

• tightly coupled vs loosely coupled

Episode 2

• We talked details:

• workload types

• floating point performance,

• tightly coupled vs loosely coupled

• MPI interconnectivity

Episode 2

• We talked details:

• workload types

• floating point performance,

• tightly coupled vs loosely coupled

• MPI interconnectivity

• RDMA latency sensitivity,

Episode 2

• We talked details:

• workload types

• floating point performance,

• tightly coupled vs loosely coupled

• MPI interconnectivity

• RDMA latency sensitivity,

• IBVerbs and all those things I love.

Episode 3

Episode 3

• So we built a whompin’ great HPC system
with some really niche components.

Episode 3

• So we built a whompin’ great HPC system
with some really niche components.

• It went like a rocket in 42RU.

Episode 4

Episode 4

• Researcher friend says: “You are brilliant. This
thing makes the last cluster I used look
positively tragic. You guys are the best things
since sliced bread”.

Episode 4

• Researcher friend says: “You are brilliant. This
thing makes the last cluster I used look
positively tragic. You guys are the best things
since sliced bread”.

• I respond “It’s what we do, you can do bread
slicing in 2RU now!”.

Episode 4

• Researcher friend says: “You are brilliant. This
thing makes the last cluster I used look
positively tragic. You guys are the best things
since sliced bread”.

• I respond “It’s what we do, you can do bread
slicing in 2RU now!”.

• The joke fell flat.

Episode 5

Episode 5

• Researcher: “Hey man. How come I can’t do
more than X-arithmetic transform operations
on Y-dataset for n-iterations of Z at any given
time, and why does it take so much extra time
when it reaches time=w?”

Episode 5

• Researcher: “Hey man. How come I can’t do
more than X-arithmetic transform operations
on Y-dataset for n-iterations of Z at any given
time, and why does it take so much extra time
when it reaches time=w?”

• Me (half awake, at 5AM in the morning,
staring at network load graphs): “Because
you’ve saturated the backplane of that 40GbE
switch”.

He did WHAT?

o_0

He did WHAT?

o_0

He did WHAT?

o_0

...

...

• I had to replay that in my own head. He’s
flattened 40Gbit/sec of IO for 26 hours
straight and the switches simply couldn’t
signal any quicker.

...

• I had to replay that in my own head. He’s
flattened 40Gbit/sec of IO for 26 hours
straight and the switches simply couldn’t
signal any quicker.

• Just to simplify that. A guy hauled ~5GB/sec
of IO through a cluster chassis for 26 hours
and didn’t realise he was doing it.

Change gears.

Change gears.

Change gears.

This isn’t really a technical
problem, honestly.

Change gears.

This isn’t really a technical
problem, honestly.

Thinking about it more deeply,
there are a bunch of concepts
that created this situation that
are more to do with human
behaviour.

Three primitives.

• There are three things I’ve found that seem
unequivocally true in research computing,
through experience, metrics and
longitudinal study.

Problem 1- Illusions of
scale.

Problem 1- Illusions of
scale.

• Do you think for a second that a
researcher is a researcher because he/she
thinks in such a conventional way that they
wouldn’t try to push something further
than it should theoretically go?

Problem 1- Illusions of
scale.

• Do you think for a second that a
researcher is a researcher because he/she
thinks in such a conventional way that they
wouldn’t try to push something further
than it should theoretically go?

• No. Of course not. So why would you
expect him/her to not flatten your
infrastructure?

• By very definition of what is done in
cutting edge science, you can’t keep up. You
can enable, contain and even “make faster”,
but you can’t keep up. Not unless you live
in a world of 100% zero compromise and
unlimited money.

• By very definition of what is done in
cutting edge science, you can’t keep up. You
can enable, contain and even “make faster”,
but you can’t keep up. Not unless you live
in a world of 100% zero compromise and
unlimited money.

• Many govt. funded projects talk about being
an “answer to” the super science
proposition.

Problem 2 - Tragedy of
commons

• The tragedy of the commons (or tragedy of the unmanaged
commons) is a dilemma arising from the situation in which multiple
individuals, acting independently and rationally consulting their own
self-interest, will ultimately deplete a shared limited resource, even
when it is clear that it is not in anyone's long-term interest for this to
happen. This dilemma was described in an influential article titled
"The Tragedy of the Commons", written by ecologist Garrett Hardin
and first published in the journal Science in 1968.

• Think about how a large scale
computational cluster works using a grid or
job scheduler.

• Think about how a large scale
computational cluster works using a grid or
job scheduler.

• Think about what happens when a very
powerful cluster becomes popular.

• We get ourselves into an inescapable
infrastructure battle at this point. Do we
centralise and compromise, depleting
outcomes, hoping that others won’t, so we
get a bigger slice of the pie, or do we build
our own bridge and cost ourselves the
earth and have horrific duplication of
services?

Problem 3 - perpetual
winners and losers.

Problem 3 - perpetual
winners and losers.

• A horrible reality of the nature of funding
and grants with regards to technology is
that the ‘big guys’ always win the big funding
and thus always end up with the big
infrastructure to perpetuate those big grant
winning funding runs.

Problem 3 - perpetual
winners and losers.

• A horrible reality of the nature of funding
and grants with regards to technology is
that the ‘big guys’ always win the big funding
and thus always end up with the big
infrastructure to perpetuate those big grant
winning funding runs.

• Don’t kid yourselves, please. Equity is an
illusion. This is not cynicism but realism.

Another story.

Episode 1

Episode 1

• Researcher: “So, that new 400TB filesystem
you gave us is amazing man!”

Episode 1

• Researcher: “So, that new 400TB filesystem
you gave us is amazing man!”

• Me: “It’s a pleasure. We aim to please”.

Episode 1

• Researcher: “So, that new 400TB filesystem
you gave us is amazing man!”

• Me: “It’s a pleasure. We aim to please”.

• Researcher: “I’m off to save the world, man!”.

Episode 1

• Researcher: “So, that new 400TB filesystem
you gave us is amazing man!”

• Me: “It’s a pleasure. We aim to please”.

• Researcher: “I’m off to save the world, man!”.

• Me: “/me eats yellow sponge cake”.

Episode 2

Episode 2

• Researcher: “Hey, directory listings are taking
aaaaages man. I need to be on Oslow with
results on Wednesday. I’ve only got 5 days to
get this done. Little help?”

Episode 2

• Researcher: “Hey, directory listings are taking
aaaaages man. I need to be on Oslow with
results on Wednesday. I’ve only got 5 days to
get this done. Little help?”

• Me: “I’ll get the dudes onto it to take a look...”

Episode 2

• Researcher: “Hey, directory listings are taking
aaaaages man. I need to be on Oslow with
results on Wednesday. I’ve only got 5 days to
get this done. Little help?”

• Me: “I’ll get the dudes onto it to take a look...”

• Dudes: “Problem is one of contention - here
are the numbers”.

The numbers.

The numbers.

The numbers.

Genome-wide-association-study
in flight, manipulating 1.1TB of data in RAM.

The numbers.

Genome-wide-association-study
in flight, manipulating 1.1TB of data in RAM.

The numbers.

The numbers.

The numbers.

60000 gene data sets,
running a Monte Carlo transform at >

3.25GB/sec

• Me: “So, we know what’s wrong!”.

• Me: “So, we know what’s wrong!”.

• Researcher: “CAN YOU FIX IT?!”

• Me: “So, we know what’s wrong!”.

• Researcher: “CAN YOU FIX IT?!”

• Me: “Remember when you asked for those 11
other people you loosely collaborate with on a
far flung shore to have the same ability on the
same 400TB filesystem?”

• Researcher: “Yeah! It’s great!”.

• Researcher: “Yeah! It’s great!”.

• Me: “This is your problem. You’ve allowed too
many people to do too much, all at the same
time. There is no array here that can sustain
that without some performance degradation”.

• Researcher: “Yeah! It’s great!”.

• Me: “This is your problem. You’ve allowed too
many people to do too much, all at the same
time. There is no array here that can sustain
that without some performance degradation”.

• Researcher: “So do we need a bigger one?...”

• Researcher: “Yeah! It’s great!”.

• Me: “This is your problem. You’ve allowed too
many people to do too much, all at the same
time. There is no array here that can sustain
that without some performance degradation”.

• Researcher: “So do we need a bigger one?...”

• Me: “You’re missing the point, spectacularly”.

What does it all mean?

What does it all mean?

• It doesn’t mean we should all down tools
and not try to do what we can.

What does it all mean?

• It doesn’t mean we should all down tools
and not try to do what we can.

What does it all mean?

• It doesn’t mean we should all down tools
and not try to do what we can.

What does it all mean?

• It doesn’t mean we should all down tools
and not try to do what we can.

• It does mean that efforts to ‘build it bigger’
are misplaced however, and we really really
seem to be in the habit of building it bigger
at the moment, as a state and nation.

What does it all mean?

• It doesn’t mean we should all down tools
and not try to do what we can.

• It does mean that efforts to ‘build it bigger’
are misplaced however, and we really really
seem to be in the habit of building it bigger
at the moment, as a state and nation.

• You can think all you want about the
‘economy of scale’, but it doesn’t mean
much apart from the bottom line.

Problems.

• Well actually, a really wicked problem.

What is that?

What is that?

• The problem isn’t understood until after the formulation of a solution.

What is that?

• The problem isn’t understood until after the formulation of a solution.

• It’s got no stopping rule.

What is that?

• The problem isn’t understood until after the formulation of a solution.

• It’s got no stopping rule.

• Solutions to wicked problems are not right or wrong, but “better” or “worse”.

What is that?

• The problem isn’t understood until after the formulation of a solution.

• It’s got no stopping rule.

• Solutions to wicked problems are not right or wrong, but “better” or “worse”.

• Every problem is essentially novel or unique.

What is that?

• The problem isn’t understood until after the formulation of a solution.

• It’s got no stopping rule.

• Solutions to wicked problems are not right or wrong, but “better” or “worse”.

• Every problem is essentially novel or unique.

• Every solution is a “one shot” operation.

What is that?

• The problem isn’t understood until after the formulation of a solution.

• It’s got no stopping rule.

• Solutions to wicked problems are not right or wrong, but “better” or “worse”.

• Every problem is essentially novel or unique.

• Every solution is a “one shot” operation.

• These problems have no given alternative solution.

...for those who think it
can be “fixed”.

...for those who think it
can be “fixed”.

• It can’t. It doesn’t have a solving rule.

• Technology to enable this kind of thing
doesn’t always have a solution, when it
comes under fire.

• Technology to enable this kind of thing
doesn’t always have a solution, when it
comes under fire.

• Vendors can’t fix it.

• Technology to enable this kind of thing
doesn’t always have a solution, when it
comes under fire.

• Vendors can’t fix it.

• Good management can’t fix it. Can mitigate
it, but not fix it. Can help people over the
line, but not sustainably bring it through
orbit.

• Technology to enable this kind of thing
doesn’t always have a solution, when it
comes under fire.

• Vendors can’t fix it.

• Good management can’t fix it. Can mitigate
it, but not fix it. Can help people over the
line, but not sustainably bring it through
orbit.

But, but, but!

But, but, but!

• Someone is bound to say this:

But, but, but!

• Someone is bound to say this:

• “Fine then. Just quota them, put a clamp on
them, limit them and they will get used to it
and as a consequence schedule appropriately!”

But, but, but!

• Someone is bound to say this:

• “Fine then. Just quota them, put a clamp on
them, limit them and they will get used to it
and as a consequence schedule appropriately!”

• Not so fast, hot shot.

Why?

Why?

• Horrible (and current) as it sounds, you’ll
make yourself as useless as the NATO/UN
guys walking around the streets in Syria.

Why?

• Horrible (and current) as it sounds, you’ll
make yourself as useless as the NATO/UN
guys walking around the streets in Syria.

• To be relevant, we need to enable.

Why?

• Horrible (and current) as it sounds, you’ll
make yourself as useless as the NATO/UN
guys walking around the streets in Syria.

• To be relevant, we need to enable.

• Not walk around looking like we’re
protecting people, when the reality is, we’re
powerless to stop/start something.

A sobering example.

A sobering example.

• About to show you a problem for us.

A sobering example.

• About to show you a problem for us.

• If scared of maths, close eyes now.

A sobering example.

• About to show you a problem for us.

• If scared of maths, close eyes now.

• We’re going to jump into the frightening
murky world of Quantitative Genomics
using Markov chain Monte Carlo for
Chromosome Chunking.

for (int i = 0; i < input.Length(); i++)
 {
 tokens.ReplaceTokens(input[i]);
 if (tokens.Length() != 2 || tokens[0].SlowCompare("M") != 0)
 {
 ifprintf(output, "%s\n", (const char *) input[i]);
 continue;

 {
 if (marker < oStart || marker > oStop)
 ifprintf(output, "S2 %s\n", (const char *) tokens[1]);

 else
 {

 ifprintf(output, "%s\n", (const char *) input[i]);
 ifprintf(snps, "%s\n", (const char *) tokens[1]);
 }

 {
 if (marker == oStart)

 mStart = tokens[1];
 if (marker == start)

 mFirst = tokens[1];
 if (marker == stop)

 mLast = tokens[1];
if (marker == oStop && oStop < markers)

 mStop = tokens[1];
 }

 }

 marker++;
 }

Why is it nasty?

Why is it nasty?

• In terms of computational complexity, it is a
mess and does horrible things to
networking and storage.

Why is it nasty?

• In terms of computational complexity, it is a
mess and does horrible things to
networking and storage.

• O(log log n), O(n), O(n2) [quadratic]

Algorithms like this kill
things.

Algorithms like this kill
things.

• We gave it a 10GbE pipe. It hit 1.25GB/sec.

Algorithms like this kill
things.

• We gave it a 10GbE pipe. It hit 1.25GB/sec.

• We gave it a 40GbE pipe. It hit 5GB/sec.

Algorithms like this kill
things.

• We gave it a 10GbE pipe. It hit 1.25GB/sec.

• We gave it a 40GbE pipe. It hit 5GB/sec.

• We gave it three aggregate 40GbE pipes
and it hit 15GB/sec.

Algorithms like this kill
things.

• We gave it a 10GbE pipe. It hit 1.25GB/sec.

• We gave it a 40GbE pipe. It hit 5GB/sec.

• We gave it three aggregate 40GbE pipes
and it hit 15GB/sec.

• If we had the resources to give it 10 *
40GbE pipes, it would hit 50GB/sec.

No easy answers.

No easy answers.

• There are no easy answers, nor are there
things to “solve” here.

No easy answers.

• There are no easy answers, nor are there
things to “solve” here.

• There is one concept that might actually
help users get done what they need to, but
it’s far from perfect.

Autonomic computing.

Autonomic computing.

• The idea is designed to address rapidly
growing complexity.

Autonomic computing.

• The idea is designed to address rapidly
growing complexity.

• Self-managing characteristics of distributed
computing resources, networks,
communications channels to deal with
unpredictable change, chaos and load whilst
hiding complexity from end users.

Autonomic computing.

• The idea is designed to address rapidly
growing complexity.

• Self-managing characteristics of distributed
computing resources, networks,
communications channels to deal with
unpredictable change, chaos and load whilst
hiding complexity from end users.

• The idea came from IBM’s labs in 2001.

Conceptual model

Conceptual model
Autonomics System space

Conceptual model
Autonomics System space

In1

Inn

...

Conceptual model
Autonomics System space

In1

Inn

...
Out1

Outn

...

Conceptual model
Autonomics System space

In1

Inn

...
Out1

Outn

...

Sensor1

Conceptual model
Autonomics System space

In1

Inn

...
Out1

Outn

...

Sensor1 Sensor2

Conceptual model
Autonomics System space

In1

Inn

...
Out1

Outn

...

Sensor1 Sensor2 ...

Conceptual model
Autonomics System space

In1

Inn

...
Out1

Outn

...

Sensor1 Sensor2 ... Sensorn

Conceptual model
Autonomics System space

In1

Inn

...
Out1

Outn

...

Sensor1 Sensor2 ... Sensorn

LOGIC

Conceptual model
Autonomics System space

In1

Inn

...
Out1

Outn

...

Sensor1 Sensor2 ... Sensorn

LOGIC

Know-how

Conceptual model
Autonomics System space

In1

Inn

...
Out1

Outn

...

Sensor1 Sensor2 ... Sensorn

LOGIC

Know-howPurpose

How it works.

How it works.

• Imagine some world event occurs that
smashes the social media server farms, or
you’ve just discovered something massive in
high-energy physics that needs big
computation time.

How it works.

• Imagine some world event occurs that
smashes the social media server farms, or
you’ve just discovered something massive in
high-energy physics that needs big
computation time.

• A significant impact occurs on the
infrastructure that is going to “work” on it.

How it works.

• Imagine some world event occurs that
smashes the social media server farms, or
you’ve just discovered something massive in
high-energy physics that needs big
computation time.

• A significant impact occurs on the
infrastructure that is going to “work” on it.

• Autonomics should take over here.

• The information from Sensors feed the
system so that it understands the
constraints and conditions “outside” that it
has to deal with in context.

• The information from Sensors feed the
system so that it understands the
constraints and conditions “outside” that it
has to deal with in context.

• In this respect, when certain conditions are
taking place, the whole world doesn’t melt
when one person puts up their hand to do
something “big”.

Complex.

Complex.

• We can talk all we wish about ubiquitous
communications and scale of technology/
clusters/compute etc, but to do what we’ve
proposed back here takes things we don’t
have yet.

Complex.

• We can talk all we wish about ubiquitous
communications and scale of technology/
clusters/compute etc, but to do what we’ve
proposed back here takes things we don’t
have yet.

• It takes a far more clear picture and global
overview than what we’ve currently got.

We’ve started. Long
way to go, though!

We’ve started. Long
way to go, though!

• Our internal HPC schedulers are now at
least partially “external influence” aware.
We created SGE complexes to take into
account network conditions, external
processing entities and interactions taking
place between things well outside of the
cluster and compute resource.

Real time computing.

Real time computing.

Real time computing.

Real time computing.

Real time computing.
LIMS

Real time computing.
LIMS

Real time computing.
LIMS

Real time computing.
LIMS

Real time computing.
LIMS

Real time computing.
LIMS

Real time computing.
LIMS

SGEqueueComplex

Real time computing.
LIMS

SGEqueueComplex

Sensor Network

Real time computing.
LIMS

SGEqueueComplex

Sensor Network

...

...

• We found out, the hard way, that
production bioinformatics and super-
resolution is ‘sensitive’ if you’ve got serious
multi-tenancy environments.

...

• We found out, the hard way, that
production bioinformatics and super-
resolution is ‘sensitive’ if you’ve got serious
multi-tenancy environments.

• To that end, you need feed back loops and
application awareness/interconnectedness
to do it correctly at all with satisfactory
outcomes.

...

• We found out, the hard way, that
production bioinformatics and super-
resolution is ‘sensitive’ if you’ve got serious
multi-tenancy environments.

• To that end, you need feed back loops and
application awareness/interconnectedness
to do it correctly at all with satisfactory
outcomes.

• It might not work en-masse.

...

...

• SGE needs Queue Complex that takes
inputs from sensors sending SNMP data
from network switching/routing hardware,
such that SGE can make decisions about
what I/O to put where and on what ports.

...

• SGE needs Queue Complex that takes
inputs from sensors sending SNMP data
from network switching/routing hardware,
such that SGE can make decisions about
what I/O to put where and on what ports.

• Sequencer box needs inputs from HPC/
Cluster and LIMS to determine what it
needs ‘next’ to carry on a sequence.

Future.

Future.

• Complete application awareness and
interconnectedness is next.

Future.

• Complete application awareness and
interconnectedness is next.

• Part of it is here and now.

Future.

• Complete application awareness and
interconnectedness is next.

• Part of it is here and now.

• Part of it, we can’t quite fathom yet.

The world is not enough.

...unless you change the world.

Thank you all, sincerely.
 You’ve been a wonderful audience.

See you again, one day...maybe.
--JC

