QUESTnet 2012 Conference

To infinity and beyond - Ubiquitous communications

Pullman Reef Hotel, Cairns, Queensland

Comparing Ethernet Network Fabric Technologies

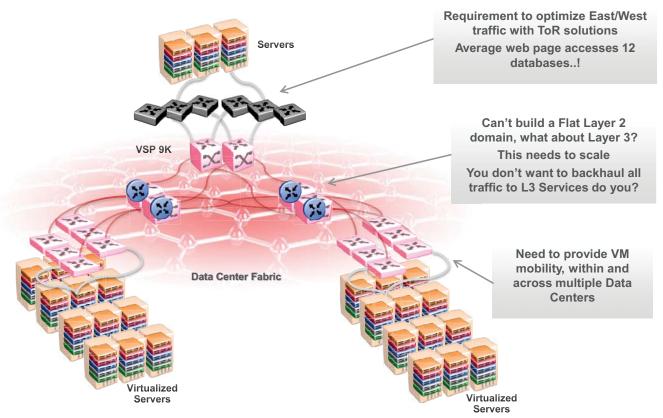
Jean Turgeon VP, Portfolio & Solutions Strategy Avaya Networking

AVAYA

Technology Battles...

- When was the last time..?
 - Remember Token Ring, ATM, 100VG-Anylan, FDDI, Arcnet, Ethernet...
 - Banyan Vines, Appletalk, IPX/SPX, IP...
- ▶ And, for the record...Ethernet and IP won...☺
- ▶ But does the best technology always win..?
 - History would say not always...
 - Beta versus VHS
 - OS2 versus Windows
 - StreetTalk versus Active Directory
 - Mainframes versus Distributed Architecture

WILL IT BE THE SAME AGAIN..?


What Problems do We Have..?

- All sorts of topology limitations
 - # of hops
 - No support for rings
 - Loops disasters
- Spanning Tree loop prevention taking on a new personality to achieve higher resiliency, Active/Standby model
- Multicast dependency on Routing Protocol, and stability & scalability limitations
- Device-based configurations
 - Human-induced errors bringing business down (the "Oh Shift Key")
- MAC explosion issues
- Slow convergence in most deployments
- Long time-to-service (days, weeks, months)
- Unicast & Multicast service offerings
- VLANS don't scale (4k), Q-in-Q helped, but...

© 2012 Avaya Inc. All rights reserved.

AVAYA

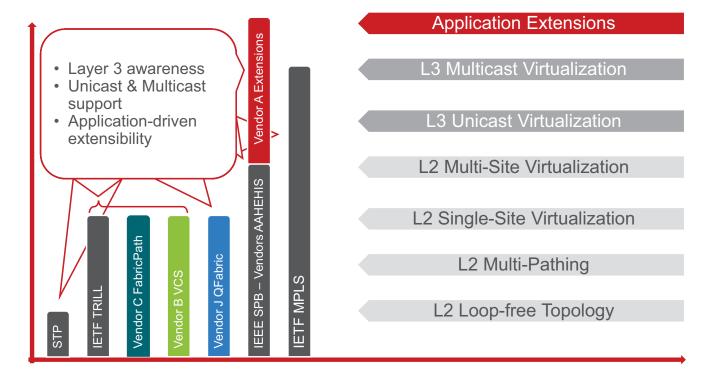
Why the Hype About Fabrics..?

Goals of Fabric Technologies

- Plug & play services enabled by end-point provisioning
- Operational simplicity (Remember this)
- Increased network uptime
- Predictable network behavior
- Optimal bandwidth & resource utilization
- Maximum network design flexibility
- Immune to human-induced-errors
- Must be optimized for Ethernet, IP, & Multicast

NOT ALL FABRICS ARE CREATED EQUAL...

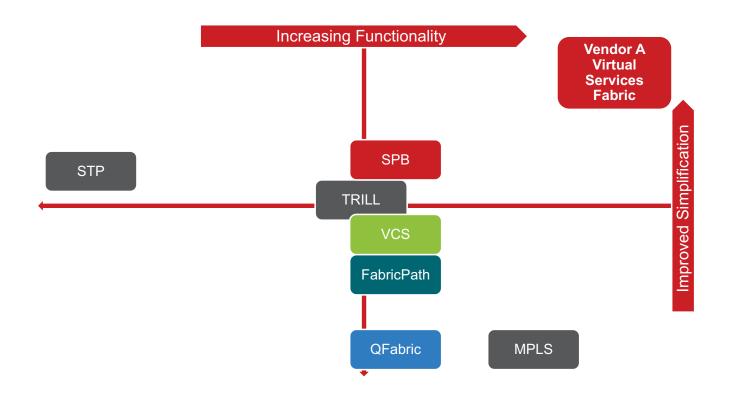
© 2012 Avaya Inc. All rights reserved.


AVAYA

What are the Choices..?

- ▶ IEEE SPB (Shortest Path Bridging) & IETF RFC 6329
- ▶ IETF TRILL (Transparent Interconnection of Lots of Links)
- FabricPath
- QFabric
- MC-LAG (Multi-Chassis Link Aggregation Group)
 - Sorry, but this one doesn't cut it...
 - Vendor A = SMLT/RSMLT (2001)
 - Vendor C = VSS/VDC (2007)
 - Vendor H = IRF (2008)
 - Vendor E = MC-LAG (2010)
 - Vendor J = Virtual Chassis
 - Vendor B = ..?

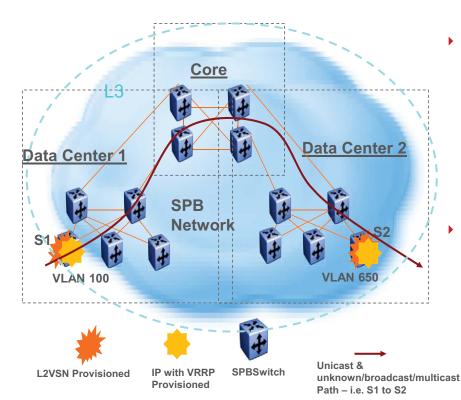
Which Fabric Technology is the Answer..?


That all depends on how you qualify the question...

© 2012 Avaya Inc. All rights reserved.

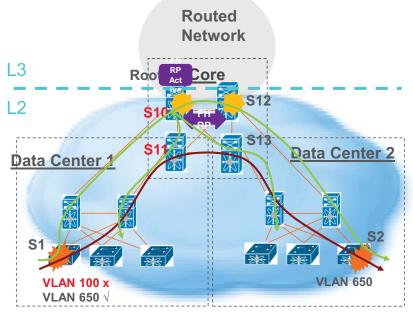
AVAYA

Functionality versus Simplicity But what if you can have both...


Data Center Virtualization Characteristics

	SPB	TRILL	QFabric	FabricPath
Standard	Yes, IEEE 802.1aq Yes, IETF – RFC 6329	IETF Draft	No, Proprietary	No, Proprietary
Global Service Virtualization	16m I-SIDs	4k VLANs	4K VLANs	4K VLANs
L2 Multi-Path	ECT & ECMP (with new draft)	ECMP	Proprietary	ECMP
VPN TLV	Standard IS-IS with new TLVs mapped to ISID	New IS-IS instance with new TLVs with VLAN mapping	None – uses proprietary mapping	New IS-IS instance with new TLVs with VLAN mapping
Multicast	Source Trees, Service-based	Shared Trees with Root Bridges, not Service-based	Service-based, but limited to QFabric	Shared Trees with Root Bridges, not Service-based
IS-IS	No base change, just new TLVs	Changed base protocol w/ new PDUs and several new TLVs	Proprietary	Changed base protocol w/ new PDUs and several new TLVs
Forwarding	Deterministic and congruent for both directions	Non-deterministic	Proprietary	Non-deterministic
OAM	802.1ag & Y.1731 deployed for years	Requires new standards to be created	Proprietary	Requires new proprietary protocols to be created
Extensibility	L2 Virtualization IPv4 L3 Virtualization Multicast Virtualization IPv6 Virtualization PBB, PBB-TE	Limited to L2 Virtualization with 4k VLANs	Spans only 100 meter in diameter, requires VPLS for extension across Data Centers	Limited to L2 virtualization with 4k VLANs

© 2012 Avaya Inc. All rights reserved.


AVAYA

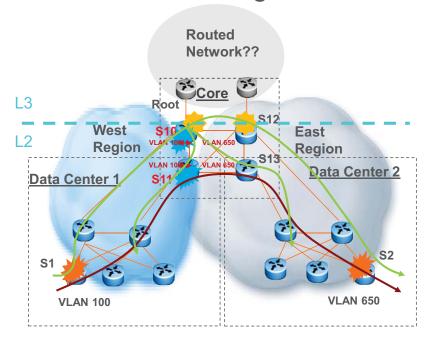
SPBM - Forwarding

- Diagram on left illustrates connecting two data centers via SPB
- To provide L2 connectivity between Data Center 1 and Data Center 2 with IP forwarding and redundancy, all we have to do is:
 - Create an L2VSN on S1 and S2 to provide L2 connectivity
 - Any VLAN ID can be used on S1 and S2 as the service is identified by the I-SID
 - On the VLAN provisioned on S1 and S2, add an local IP address on the same subnet and enable IP VRRP
- In summary, we only need to touch two switches to provision this service (S1 and S2) and we accomplish
 - L2 MAC learning between S1 and S2
 - IP forwarding from anywhere in the network to/from Data Center 1 and Data Center 2
 - Full IP resilience between Data Center 1 and Data Center 2 via VRRP

FabricPath - Forwarding

- Cannot use different VLAN IDs at edge
- IP is separated from FabricPath; needs external routers and ether M1 module or F2 module in Nexus 7000
 - Restricted to F series of modules for FabricPath
 - IIP cannot be extended to edge, but, to core
 - If F1 module is used, M1 module must be installed to perform IP networking from FabricPath to IP – MAC table must be duplicated from F1 to M1 modules
 - Need to run FHRP for IP redundancy to routed core
- Unknown/broadcast/multicast traffic flow based on root bridge selection while unicast flow is based on shortest path

Unicast path i.e. S1 to S2


Unkown/broadcast/multicast path i.e. S1 to S2

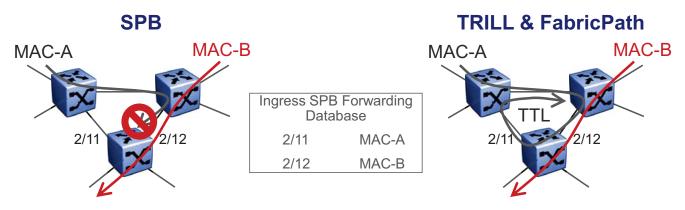
© 2012 Avaya Inc. All rights reserved.

AVAYA

11

TRILL - Forwarding

L2 Provisioned


Router

Unicast path i.e. S1 to S2

- Diagram on left illustrates connecting two data centers via
- Assuming we have need to have L2 connectivity between VLAN 100 in Data Center 1 to VLAN 650 in Data Center 2
 - On all Rbridges connecting the two regions (\$10 & \$11), one must manually map the **VLANS**
 - i.e. East VLAN 100 → West VLAN 650 to allow, for example, a TRILL frame with an Inner VLAN of 100 received by S10 in the West region to be forward with an Inner VLAN changed to 650 to the East region
- Unknown/broadcast/multicast traffic flow based on root bridge selection while unicast flow is based on shortest path
- As there is no support for IP with TRILL, some sort of mapping between the TRILL network and IP network must be accomplished most likely via S10 and S12

Unkown/broadcast/multicast path i.e. S1 to S2

Loop Handling...

- SPB's RPFC (Reverse Path Forwarding Check) does not allow loops
 - Prevents loops before they begin
- > TTL allows loop, and then discards it after value reaches 0
 - Give up on the problem, dimensioning the crater...

WHICH ONE WOULD YOU SELECT ..?

© 2012 Avaya Inc. All rights reserved.

AVAYA

Native IP Support - Somewhat Important...

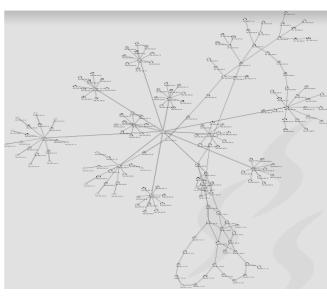
- SPBM supports Native IP (IP Shortcuts)
 - No IGP protocols, simple as re-distributing local interfaces into IS-IS
 - Can also import/export external protocols (static, RIP, OSPF, BGP)
- ▶ IP is not native to either TRILL or FabricPath
 - In order to support IP, FabricPath uses specific hardware
 - IP is not supported natively, but outside of FabricPath
- Next generation networks....
 - It's all about IP and Ethernet, isn't it?

Management

OAM

- SPB
 - SPB supports IEEE 802.1ag Connectivity Fault Management (CFM)
 - Offers true end-to-end testing (ping, traceroute, tracetree)
 - Multi-vendor OA&M (I2ping & I2traceroute) also demonstrated
 - http://ieee802.org/1/files/public/docs2011/aq-ashwood-smith-spbm-3rd-interop-0718-v01.pdf

FabricPath


- Pong L2 Ping and L2 Traceroute
 - Requires the Enhanced Layer 2 Package (N7K-EL21K9) license
- TRILL
 - No end-to-end testing yet, IETF drafts
- QFabric
 - Proprietary

© 2012 Avaya Inc. All rights reserved.

1

AVAYA

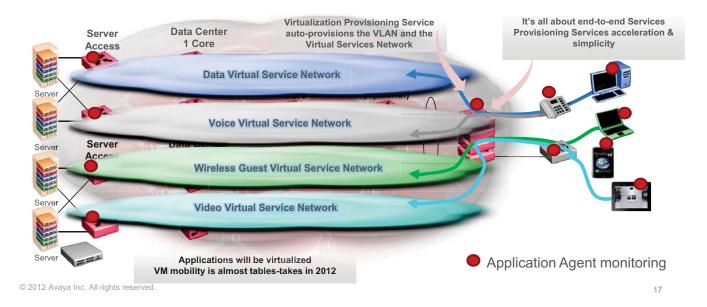
Cross-Industry Interoperability

Highlights

- Large-scale network modelling
- ▶ 6 Implementations
- ▶ 5 Vendors
- ▶ 10 real Switches
- ▶ 1 high-end tester
- ▶ 1 passive network viewer (via NNI)
- ▶ 1 LINUX/Quagga emulator

<ottawa-6>spb status

SPB Status:


mode SPBM, nodes 187, links 412, adj 6, ufib 372, mfib 45

© 2012 Avaya Inc. All rights reserved.

10

Food For Thought...

- What really matters..? Users and Applications; do we all agree on that..?
- Why only focus in Data Centers..? Why not extend the Fabric closer to where Apps are used..?
- Isn't VDI just a real-time App with a new personality..?

AVAYA

In Summary

- ▶ SPB: IEEE 802.1aq Shortest Path Bridging & IETF RFC 6329
 - Deployed in carriers and enterprises around the world
 - SPB creates an end-to-end virtual Ethernet
 - SPB is L3-capabile, and optimized for IP and Multicast
 - SPB has successfully demonstrated multi-vendor interoperability
- FabricPath
 - No standards, proprietary implementation, some HW dependencies
- TRILL
 - TRILL is the IETF attempting to reinvent IEEE protocols
- QFabric
 - A proprietary architecture commitment
- Remember
 - Simplicity, Inter-operability, Agility, Flexibility, TTS (Apps/users), Business Continuity, Scalability !!!!

