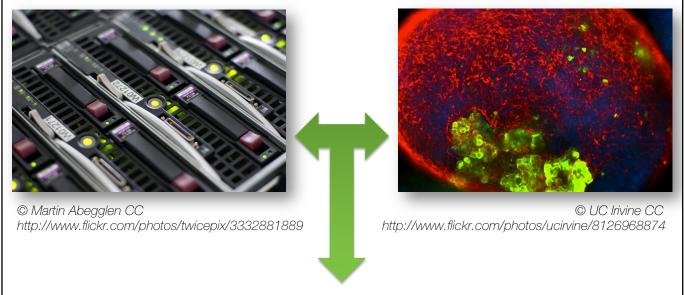
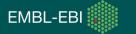


QUESTnet 2013

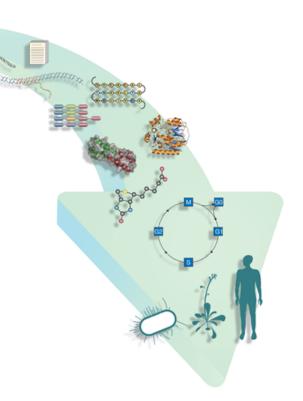
2-5 July, Royal Pines Resort, Queensland


Andrew Yates
Ensembl Core Project Leader

European Molecular Biology Laboratory,


European Bioinformatics Institute

What is Bioinformatics?


How can Computing and Biology enable each other?

Understanding Life – from molecules to systems

LIBERT CONTRACTOR

- Parts Dictionary
- Thesaurus (interactions)
- Complete Networks (Circuit Diagrams)
- Atlas what happens where
- How it works & when (simulations)
- How it goes wrong and how to put it right

What is EMBL-EBI?

- Provides data and software support for Bioinformatics
- Part of the European Molecular Biology Laboratory
- International non-profit research institute
- 21 members states plus associate
- 1,500 members of staff across 5 outstations
- European Bioinformatics Institute is a UK outstation

What Does EMBL-EBI Provide?

- Archives
 - Records of scientific publications and output
 - Ensures stability future reproducibility
- Value-added resources
 - Usually built from archived data
 - Enables science
 - Data analysis by world leaders
- Research and special projects
 - Investigating biology, outreach & training to text mining

EMBL Australia

- 1st associate member of EMBL
- Joined in 2008
- Promotes excellence in molecular biology in Australia
- BRAEMBL (<u>Bioinformatics Resources Australia EMBL</u>)
 - Institute for Molecular Bioscience (IMB) at University of Queensland
 - Currently mirrors 13TB of EBI data where beneficial & practical
 - Without local expertise Australian scientists cannot make novel insights

Bioinformatics – Understanding DNA

- 1st genome sequenced in 1976
 - bacteriophage MS2 3,569 base pairs long

- Human genome released in 2000*
 - 3.2bp (billion base pairs)

1,252 complex organism genomes now sequenced

* Continually refined since then

Human Genome Printout at the Wellcome Collection, London.
© Russ London at en.wikipedia

^{8 18 18 19 19 19 20 20 20 21 21 22 22} YXXXXXX

DNA - How Can We Use It?

DNA extraction

Sequencing

ACTGTCGATCGATA ACTGTCGATCGATA

ACTGTCGATCGATA ACTGTCGATCGATA

ACTGTCGATCGATA ACTGTCGATCGATA

What am I presenting today?

3 case studies of how clouds are aiding bioinformatics

- Two as a cloud consumer
 - Ensembl and Amazon Web Services Content Distribution
 - Helix Nebula Cloud Pipelines

- One as a cloud provider
 - Embassy Cloud laaS

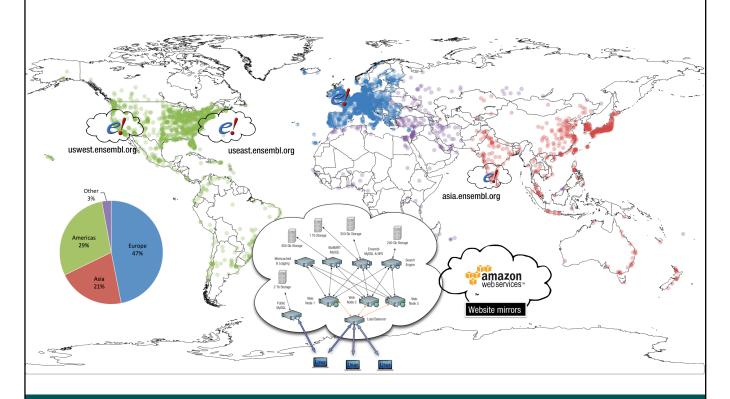
A novel method of data archiving

Case Study One - Ensembl & AWS

 Ensembl is a world leader in the provision of genome data and annotation

- Based at EMBL-EBI and the Wellcome Trust

 Sanger Institute, Cambridge wellcome trust
- Launched in 1999
- Approximately 5 data and code releases per year
- Highly accessed from around the world
 - Over 20 million hits per month
 - 2 million unique visitors per year

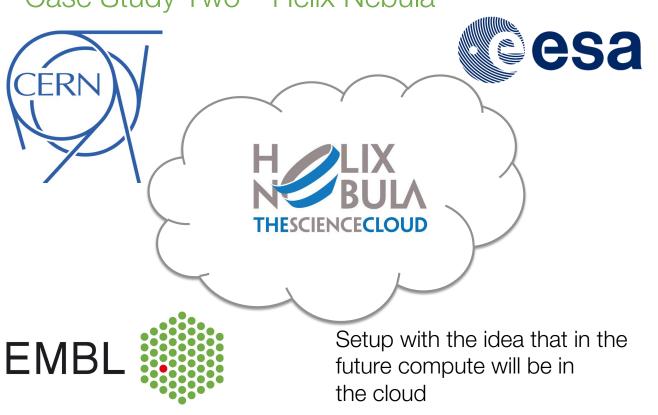

Ensembl – The Geolocation Problem

A west coast USA user; ~11 seconds for 1 page

A UK user; ~2 seconds for the same page

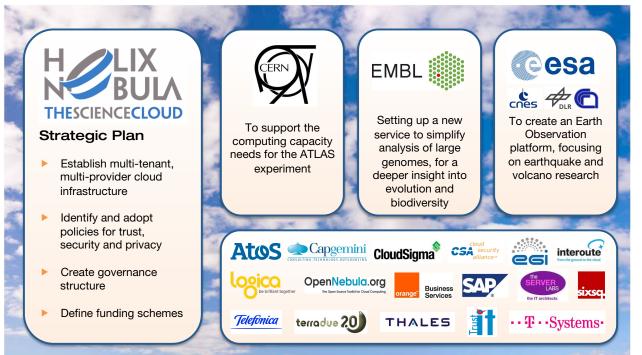
- 2009 we launched our 1st US West Coast mirror
 - Do-it-yourself content delivery network
 - Buy hardware
 - Ship servers and an engineer to California
 - Cut our LA load time down to ~3 seconds

Ensembl – AWS Deployment

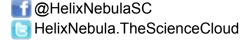


Ensembl – An AWS Success Story

- Cost
 - We can approx. host all 3 AWS mirrors for one DIY server
 - "Free" upgrades
- No need to travel
- Website redundancy
- Deployment
 - One SOP required to deploy on multiple sites
- Makes hosting an Ensembl Sydney mirror possible
- The sun never sets on Ensemble



Case Study Two – Helix Nebula



A European cloud computing partnership: big science teams up with big business

Timeline

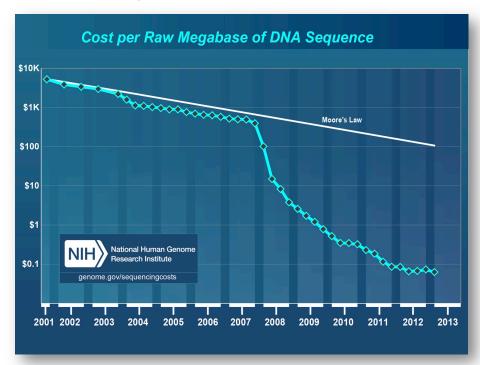
Set-up (2011) Pilot phase (2012-2014)

Full-scale cloud service market (2014 ...)

- Select flagships use cases
- Identify service providers
- Define governance model

- Deploy flagships
- Analysis of functionality, performance & financial model
- Success Stories

- More applications
- More services
- · More users,
- More service providers



co-funded by EC under grant 312301 with 1.8M€

DNA Sequencing – Outcompetes Moore's Law

Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: www.genome.gov/sequencingcosts. Accessed 7th June 2013

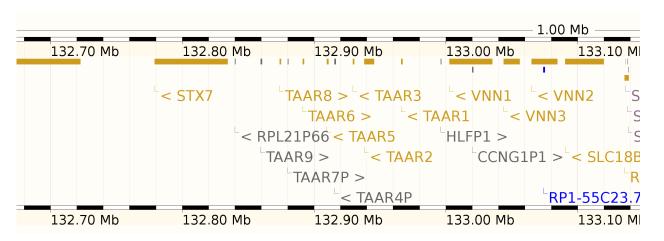
DNA Sequencing – Data Volumes

- Population studies
 - ~7 billion Homo sapiens
- Sequencers are everywhere
 - ~8.7 million species in the world
 - Agriculture disease resistant traits
 - Epidemiology tracing infection
 - Deep sea explorations
- More than 1,500 high throughput sequencers in the world
 - 3.6PB a day
 - 1.1 2.2 ExaBytes a year

DNA Sequencing – Next Generation Technologies

Illumina MiSeq – a \$125K bench-top sequencer available today

2.3 human genomes per day


Oxford Nanopore MinION; a \$900 laptop sequencer in development

Tens of Gb per day

Helix Nebula – Genome Annotation

Whilst our capacity to read DNA has increased we still require a way to assemble a genome and bring context (primarily genes) to it

Ensembl has developed well respected pipelines to efficiently locate Genes on genomes

Helix Nebula –Genome Annotation as a Flagship Project

- Annotation requires expertise and compute
 - Makes it a good challenge for Helix Nebula

- Challenges to the cloud providers
 - Can they deliver the compute?
 - Can they deliver the IO?
 - Can they deliver the support?

Can we provide pan-European genome analysis tools?

Helix Nebula - Conclusions

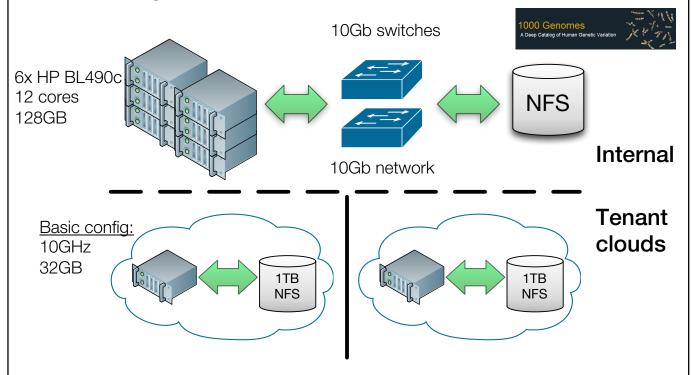
- All flagships have deployed scientific applications
- Each involving tens of thousands of jobs
- Developing a model for future federated clouds
 - Building on lessons from the proof of concept
 - Interoperability
 - Cloud federation

Case Study Three – Embassy Cloud

- We have very large data sets
 - 2PB of single copy data held in European Nucleotide Archive's (ENA) Sequence Read Archive (SRA)
 - 16-20PB of disk is spun at EMBL-EBI

- Geography and network still a limiting factor
 - Code is much smaller than data

- EMBL-EBI is piloting Infrastructure as a Service (laaS)
 - Learning from other cloud providers



Embassy Cloud - Details

- Aims to provide secure, flexible infrastructure to tenant organisations close to EMBL-EBI's data
 - High bandwidth
 - Low latency
- Tenants are both academic & commercial
- Hosted at EMBI-EBI but is outside of our LAN
- Built on top of VMware's vCloud Director
 - Hypervisors are clustered meaning automatic VM restart
 - Machine maintenance without cloud downtime

Embassy Cloud - Infrastructure

The internet and other EMBL-EBI resources

Embassy Cloud - Results

8 organisations on Embassy Cloud for multiple uses

One live mirror service (http://europe.omim.org/)

30 VMs are running at any one time

- Over 100 VMs have been deployed during the pilot phase
- Provides users with a viable mechanism to circumvent geography

Archiving Data in DNA

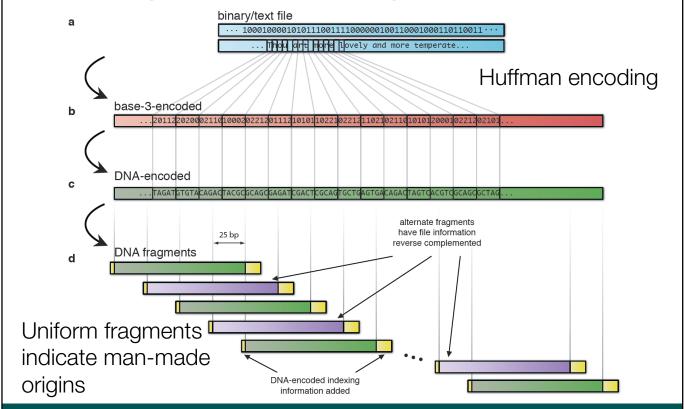
- We think about DNA a lot
- We think about long term storage a lot
- DNA is very robust
- DNA is data dense
 - 1g of DNA can store 2PB including error correction
- What if we can store data as DNA?

© Flying Puffin CC http://www.flickr.com/photos/flyingpuffin/5899473679/

Archiving DNA – The Theory

LETTER

doi:10.1038/nature11875


Towards practical, high-capacity, low-maintenance information storage in synthesized DNA


Nick Goldman¹, Paul Bertone¹, Siyuan Chen², Christophe Dessimoz¹, Emily M. LeProust², Botond Sipos¹ & Ewan Birney¹

- Not the first attempt at encoding data in DNA
- A number of unique developments
 - Data representation in base-3 rather than binary
 - DNA encoding avoids runs of the same nucleotide
 - 4 fold redundancy

Archiving Data - Converting Binary to DNA

Archiving Data – Proof of Concept

MP3 (168539 bytes)

JPEG (184264 bytes)

PDF (280864 bytes)

"From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou contracted to thine own bright eyes,"

ASCII Text (107738 bytes)

Archiving DNA – Results and the Future

- DNA synthesised by Agilent Technologies
- All files were recovered

- DNA synthesis costs \$12K per MB
 - Same as 1MB in 1980
 - A human genome would cost \$38,400,000 to make
- Technique has been patented
- A viable 1000 year data archive
- Within a decade we believe this will be cost effective for 50 year archives

Conclusions

 Bioinformatics continues to push our capacity and ability to store, process and display data

Science requires a global perspective

- Cloud infrastructures present unique opportunities
 - Augment our data processing
 - Bringing consumers & data together

Bioinformatics can and will continue to help computing

Acknowledgments

- Ensemble
 - Stephen Keenan, Stephen Trevanian
- EMBL-EBI
 - Nick Goldman, Ewan Birney, Andy Cafferkey, Paul Flicek
- EMBL
 - Rupert Lueck
- Agilent Technologies
 - Siyuen Chen, Emily LeProust
- All staff at EMBL-EBI and EMBL

Funding

Questions?

