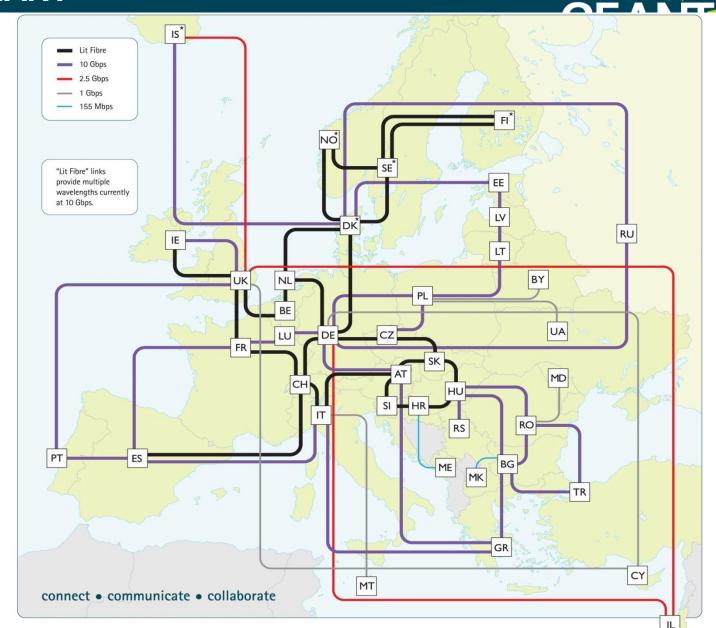


Improving network performance within the cloud: eduPERT and a case study.

Alessandra Scicchitano SWITCH



Life is full of existential questions:

- Who am I?
- Who do I work for?
- Why am I here?

GEANT

The Swiss Research and Educational network

A community of Performance Experts

eduPERT

- eduPERT is an open community to all interested in performance issues
- An extended field of action moving towards the end user and the end point, including positioning for new technologies such as cloud which increase the complexity of performance understanding and diagnosis.

 Increased dissemination of performance expertise among NRENs and end user communities.

How we break boundaries

- Monthly phone calls
- F2F meetings
- PERT KB: http://kb.pert.geant.net/
- eduPERT Portal: http://edupert.gent.net/
- Mailing list: <u>pert-discuss@geant.net</u> (registration link on the portal)
- Performance U!

Performance U!

- "Performance U!" stands for Performance University. Which is an expert school that aims to train performance experts, providing validated performance resources and face to face training.
- "Performance U!" hosts an annual school where the eduPERT community can learn about performance implications of new tools and new technologies and a summer workshop where the community brings outside its experience and knowledge.
- The eduPERT portal (http://edupert.geant.net/) hosts different topics of interest for anyone interested in Performance Enhancement.

eduPERT

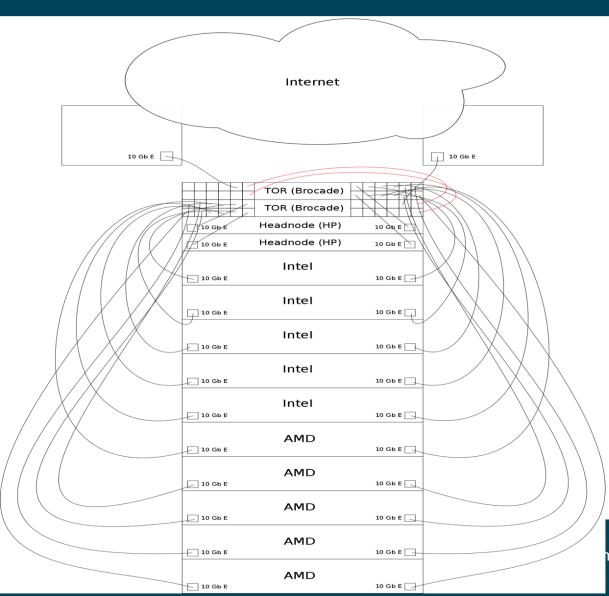
Because great performance doesn't know borders or boundaries

SWITCH

SWITCH

- Happily based where Heidi lives ©
- A foundation born 26 years ago
- It is the Swiss NREN but it also offers many other services including Cloud

Building Cloud Competence - BCC



- Project on going since September 2012
- The main goal of the project is learning as much as possible about the Cloud and its possible use within our community

 A pilot infrastructure has been built from scratch and it is now open to the community

BCC - Hardware

BCC - Software

- OpenStack
- Puppet
- Ceph-FS
- KVM

The story

- A customer from USI (Universita' della Svizzera Italiana) running his own application within BCC noticed that the max speed he could reach was only 80Mb/s
- Doing some research on his own to understand what the problem could be he read a blog [1] about openstack and high speed network.
- In particular he asked us whether the words "virtio" and "vhostnet" would ring a bell
- It did indeed...

Going back to...

- Almost one year ago: The SWITCH DNS case
- The DNS server is on a VM
- Symptom: Terrible qps (queries per second that the server is able to answer without "dropping")

Before...

Results BIND 9.8.1-P1

	bamus (1 vCPU)			bamus (2 vCPU)			niobe			
		+querylog	+querylog, +dsc		+querylog	+querylog, +dsc		+querylog	+querylog, +dsc	+dsc
manaro	~21'000 qps	~16'000 qps	~10'000 qps	~18'000 qps	~15'000 qps	~10'000 qps	~44'000 qps	~38'000 qps	~28'000 qps	~32'000 qps
asama	~18'500 qps	~15'500 qps	~10'000 qps	~16'000 qps	~14'000 qps	~10'000 qps	~32'000 qps	~31'000 qps	~28'000 qps	~28'000 qps
manaro + asama	~21'000 qps	~16'000 qps	~10'000 qps	~18'000 qps	~15'000 qps	~10'000 qps	~50'000 qps	~42'000 qps	~31'000 qps	~35'000 qps

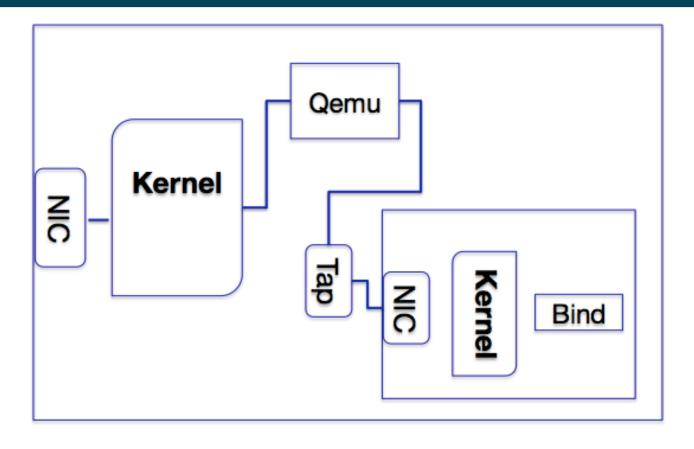
Of course we were immediately able to say where the problem was:

"The bottleneck is located somewhere between the Hardware Interface of the mother host and the BIND (DNS software) in the Virtual machine"

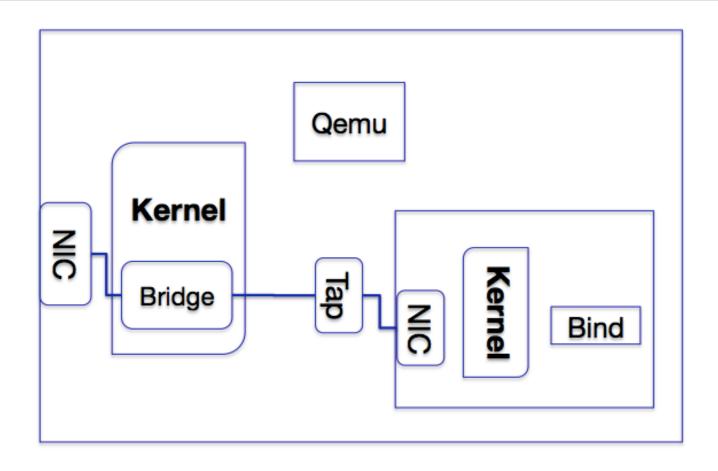
That's a joke, right?

We tried different things before digging into the KVM architecture, but nothing really worked

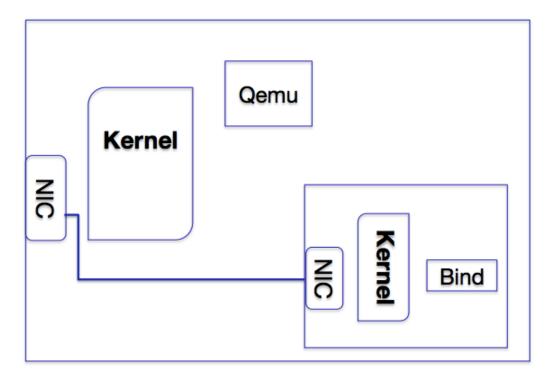
Virtualization


Three different types of virtualization exist:

- Emulation
- Paravirtualization
- Hardware pass-through


KVM - Emulation

KVM - Paravirtualization



Hardware pass-through

Hardware pass-through means that the guest VM has direct access to the physical hardware.

Paravirtualization was the solution to the DNS problem.

After!!!

	simbo (1 vCPU)			símbo (2 vCPU)			simbo (3 vCPU)			
	-	+querylog	+querylog, +dsc	-	+querylog	+querylog, +dsc		+querylog	+querylog, +dsc	+dsc
manaro	23'900 qps	16'200 qps	10'700 qps	45'800 qps	28'500 qps	19'500 qps	57'100 qps	36'400 qps	28'300 qps	46'200 qps
manaro + lopevi	27'000 qps	17'700 qps	11'600 qps	48'800 qps	29'500 qps	19'500 qps	73'000 qps	39'000 qps	30'000 qps	50'300 qps

In BCC

We looked for the type of interface that our VMs had:

```
ir=0x4,drive=drive-virtio-disk0,id=virtio-disk0,bootindex=1 -drive file=/var/lib/nova/in
stances/instance-00000059/disk.local,if=none,id=drive-virtio-disk1,format=qcow2,cache=no
ne -device virtio-blk-pci,scsi=off,bus=pci.0,addr=0x5,drive=drive-virtio-disk1,id=virtio
disk1 -netdev tap,fd=25,id=hostnet0 -device rtl8139,netdev=hostnet0,id=net0,mac=fa:16:3
```

Let's paravirtualize BCC

The max speed of the rtl8139 network adapter is 100Mb/s (?????)

No wonder why we couldn't get any better than that.

PARAVIRTUALIZATION!

Howto: Openstack

This line needs to be added in the nova.config file

libvirt_use_virtio_for_bridges=true

With this modification every VM is now created directly with paravirtualized drivers.

Howto: VMs already existing

Manual steps on the mother-host:

- adding <model type='virtio' /> to the interface in section /var/lib/nova/instances/instance-xxxx/libvirt.xml enables the virtio driver
- virsh destroy instance-xxxxxx
- virsh undefine instance-xxxxxx
- virsh define /var/lib/nova/instance-xxxxxxxx/libvirt.xml
- vish start instance-xxxxxx

Drivers now

sk0,format=qcow2,cache=none -device virtio-blk-pci,scsi=off,bus=pci.0,addr=0x4,drive=drive -virtio-disk0,id=virtio-disk0,bootindex=1 -drive file=/var/lib/nova/instances/instance-000 000a7/disk.local,if=none,id=drive-virtio-disk1,format=qcow2,cache=none -device virtio-blk-pci,scsi=off,bus=pci.0.addr=0x5.drive=drive-virtio-disk1,id=virtio-disk1 -netdev tap,fd=22,id=hostnet0,vhost=on,vhostfd=23 -device virtio-net-pci netdev=hostnet0,id=net0,mac=fa:16:

Comparison

RTL8139

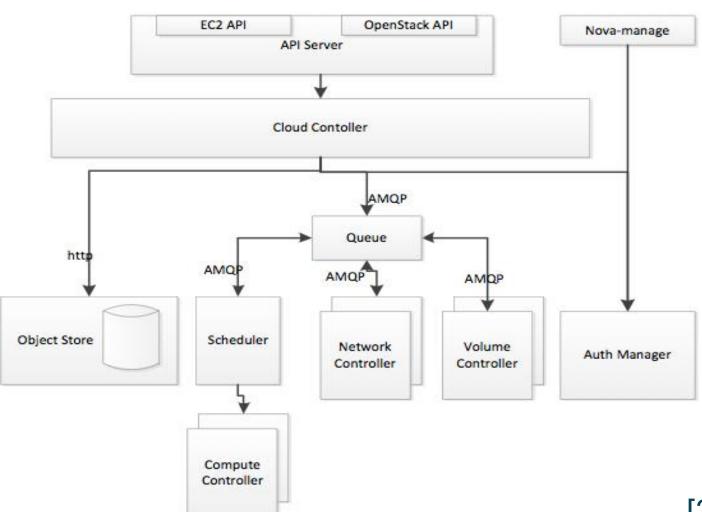
```
root@questnet:~# iperf -i 1 -c 10.0.0.20
Client connecting to 10.0.0.20, TCP port 5001
TCP window size: 22.9 KByte (default)
 3] local 10.0.0.29 port 57754 connected with 10.0.0.20 port 5001
 ID] Interval
               Transfer
                               Bandwidth
      0.0- 1.0 sec 14.2 MBytes 120 Mbits/sec
     1.0- 2.0 sec 16.4 MBytes 137 Mbits/sec
     2.0- 3.0 sec 16.9 MBytes 142 Mbits/sec
     3.0- 4.0 sec 15.4 MBytes 129 Mbits/sec
     4.0- 5.0 sec 14.1 MBytes 118 Mbits/sec
     5.0- 6.0 sec 15.9 MBytes 133 Mbits/sec
     6.0- 7.0 sec 15.5 MBytes 130 Mbits/sec
  3] 7.0- 8.0 sec 16.4 MBytes 137 Mbits/sec
  3] 8.0- 9.0 sec 16.1 MBytes 135 Mbits/sec
  3] 9.0-10.0 sec 16.9 MBytes 142 Mbits/sec
      0.0-10.0 sec 158 MBytes 132 Mbits/sec
```

Comparison

First improvement using e1000

```
ubuntu@questnet:∼$ iperf -c 10.0.0.4 -i 1
Client connecting to 10.0.0.4, TCP port 5001
TCP window size: 22.9 KByte (default)
  3] local 10.0.0.29 port 48665 connected with 10.0.0.4 port 5001
 ID] Interval
                   Transfer
                                Bandwidth
  3] 0.0- 1.0 sec 11.6 MBytes 97.5 Mbits/sec
  3] 1.0- 2.0 sec 16.1 MBytes 135 Mbits/sec
  3] 2.0- 3.0 sec 28.9 MBytes 242 Mbits/sec
  3] 3.0- 4.0 sec 46.0 MBytes
                                386 Mbits/sec
  3] 4.0- 5.0 sec 40.5 MBytes
                                340 Mbits/sec
  3] 5.0- 6.0 sec 25.5 MBytes
                                214 Mbits/sec
  31 6.0- 7.0 sec 29.9 MBytes
                                 251 Mbits/sec
  3] 7.0- 8.0 sec 30.4 MBytes
                                255 Mbits/sec
  3] 8.0- 9.0 sec 29.6 MBytes
                                249 Mbits/sec
  3] 9.0-10.0 sec 37.5 MBytes
                                315 Mbits/sec
  3] 0.0-10.0 sec 296 MBytes
                                 248 Mbits/sec
ubuntu@questnet:∼$ ∏
```

Comparison



VIRTIO

```
ubuntu@questnet:~$ iperf -c 10.0.0.4 -i 1
Client connecting to 10.0.0.4, TCP port 5001
TCP window size: 22.9 KByte (default)
  3] local 10.0.0.29 port 48661 connected with 10.0.0.4 port 5001
  ID] Interval
                Transfer
                                Bandwidth
      0.0- 1.0 sec 849 MBytes 7.12 Gbits/sec
   3] 1.0- 2.0 sec 937 MBytes 7.86 Gbits/sec
   3] 2.0-3.0 sec 876 MBytes 7.34 Gbits/sec
   3] 3.0- 4.0 sec 857 MBytes 7.19 Gbits/sec
   31 4.0- 5.0 sec 935 MBytes 7.84 Gbits/sec
   3] 5.0- 6.0 sec 956 MBytes 8.02 Gbits/sec
   3] 6.0- 7.0 sec 972 MBytes 8.15 Gbits/sec
   3] 7.0-8.0 sec 976 MBytes 8.18 Gbits/sec
  3] 8.0- 9.0 sec 956 MBytes 8.02 Gbits/sec
  3] 9.0-10.0 sec 991 MBytes 8.32 Gbits/sec
      0.0-10.0 sec 9.09 GBytes 7.81 Gbits/sec
ubuntu@questnet:∼$ ∏
```

OpenStack Components

References

[1] http://buriedlede.blogspot.ch/2012/11/driving-100-gigabit-network-with.html

[2]

http://salsahpc.indiana.edu/b534projects/sites/default/files/public/6_Behind %20the%20scenes%20of%20laaS%20implementations_AIRwais_Sumaya h%20Abdulaziz.pdf