

The Research Database as a Service

Daniel Tosello Research Data Analyst La Trobe University eResearch July 2013

The Research Database as a Service

- Rationale for development, Setting the Scene
 - Why did we decide to build this system?
- How does it relate to Cloud systems?
 - Metaphors, Terminology and Paradigms
 - The As A Service model
- How is it different?
 - The traditional research database
 - On demand services
 - The eResearch Ecosystem
- How to develop your own
 - Components, Workflows and Technical details

The Research Database as a Service

At La Trobe University eResearch, we are on a mission

It's not just about databases It's not just about metadata

From the eResearch Perspective:

- Challenges in Data Management
 - Changing requirements in grant funding
 - ARC & NHMRC
- Resource limitations
 - Limited time to invest in development
 - Some development virtually necessary to provide coherent functionality
- Long Tail & Silo data
- Consideration of Researcher priorities
- Meeting common needs

The eResearch Perspective – continued

- Acquiring passive records relies on initial input from researchers
- Maintaining active data relies on ongoing input from researchers
- Collating results requires them to be available
- Flexibility of application
 - Different types of projects
 - Web Applications
 - Generic structured data collections
 - Old, Long tail or siloed datasets

From the Researcher Perspective:

- A great variation of requirements
 - Disciplinary level
 - Project level
- Tools requirements must be met
- Sharing and collaboration of data is both desirable and a long standing challenge
 - Often peers are not at the local institution
 - Security and capacity issues
- Time limited
- New data management funding requirements are creating a need

What Researchers actually want

- Collaboration
- Sharing already collected, siloed data
- Collaboration
- Convenience
- Collaboration

What Researchers definitely don't want

- Extra overhead
- Stress

With that in mind, ideally...

- The system should track Researcher's metadata for them
 - Researchers shouldn't have to spend so long entering metadata
 - Metadata should always be sourced automatically where possible
 - Metadata should be automatically distributed to relevant repositories for curation
- Integrate technology into workflows without visibly modifying them
- Preference application platforms with accessible APIs
- Maintain a group capable of performing implementation, updates and modifications as necessary

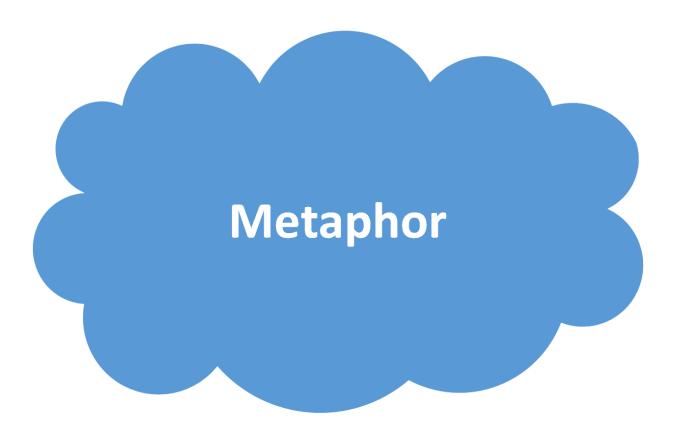
At La Trobe –

- Underlying ICT infrastructure and resources
 - Active Directory
 - Traditional Storage (NAS, SAN)
 - Database Administrators
 - Enterprise database software
 - Enterprise Applications
 - Process oriented, potentially lacking agility

At La Trobe –

- Existing data management infrastructure
 - Fedora (VTLS)
 - ReDBox
 - Library Data Curation Team
 - Early attempts to integrate data management

No singular system could meet the needs of ALL researchers.


However, the required functionality can be provided by a combination of different packages linked to a central authorization index

No singular system could meet the needs of ALL researchers.

However, the required functionality can be provided by a combination of different packages linked to a central authorization index

But as an aside...

The Cloud

The Cloud (What it is)

- Obfuscation as a management technique
 - Black box philosophy
 - APIs
 - A common functional approach in software
- Extending this paradigm to hardware
 - Platform independence
 - Distributed storage, redundancy
 - Allows for massive automation of parallel processes
 - Immensely powerful for some tasks when managed properly

The Cloud (...and what it isn't)

- Does not reduce the need for computing power
 - Marginally increased requirements and overhead
 - Potential for optimization
- Abstracts storage, but does not reduce reliance on physical media
- Does not magically resolve latency issues
 - Data must be physically near to compute
 - Geographic distances can be a challenge

The Cloud (...and what it isn't)

- Not actually logistically simpler
 - Logistic load shifted to cloud provider
 - Logistic capacity *also* shifted to cloud provider
 - Disastrous performance and reliability if complex demands aren't met
- Capacities shouldn't be taken for granted in research oriented organizations
 - Providing good services gives researchers an edge

The Cloud (...and what it isn't)

So the cloud isn't the answer?

Back to the situation at hand...

Some problems worth solving.

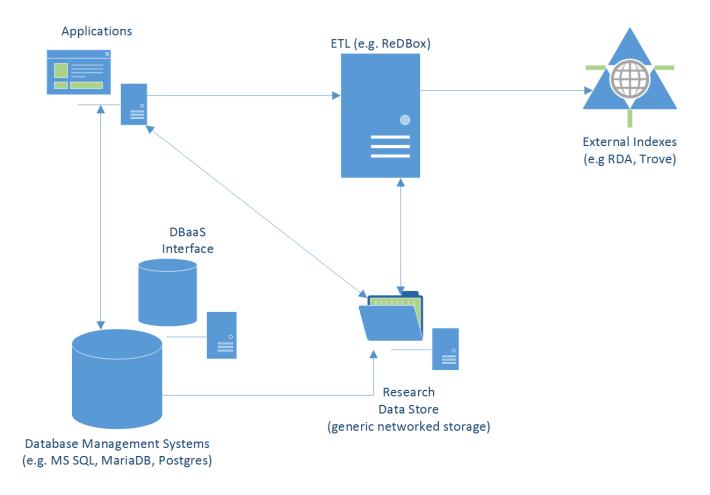
- Databases require ongoing maintenance & support
- Administration must be performed on the whole stack
- ICT reluctant to allow free reign on managed systems, with fair reason
- Hardware is expensive and requires administration too

All these factors represent significant barriers to the average researcher

Traditional databases

- Run on monolithic database servers
- Guarded fiercely by ICT
 - Secure
 - Potentially hard to access legitimately
 - By extension, potentially hard to use for collaboration
 - ICT reluctant to engage with content

Databases in the Software as a Service paradigm


- Run on distributed systems owned by large entities
- Out in the world
 - No direct control over physical relationship between data and compute
- Can be truly secure but only with additional overhead
 - Node to Node encryption
 - Extra resources for authorization management

Our Implementation – The best of both worlds

- Surprisingly simple
- Using only common open source or enterprise supported software
- Conceptually separate responsibility for structure from content
- Using as much existing infrastructure and support as possible
 - Authentication methods
 - Structured storage and current DBA workflows
 - Existing applications
 - Institutional Metadata
 - No change to previous server or database administration procedure

The Jigsaw Puzzle

- Task oriented endpoints
 - Authentication (AD/LDAP)
 - MySQL/MariaDB, MS SQL, PostgreSQL databases
 - HTML based interfaces
 - Fedora/MyTardis repositories
 - ReDBox for metadata processing and transport
 - Web Applications
 - Research software packages

In a sense, it's NOT that different

In a sense, it's NOT that different

It's simply a way of assembling existing technologies to mitigate some of the barriers to use and administrative overhead

Therefore, you can do it to!

- Assess your current environment
 - Both hardware & software are relevant
 - Adapt where possible
- Assess your researchers' specialist needs
 - Dedicated software packages
 - Existing workflows
- Assess the strengths of your current team
 - Work with familiar technology where possible
 - Focus on outcomes
 - Try to avoid investing in excessively niche software unless necessary
 - Attempt to make relevant data available to other applications

Systems to fill universal roles – Database Storage

- Structured Storage
 - MySQL/MariaDB
 - PostgreSQL
 - Microsoft SQL Server
- Unstructured Storage
 - SMB/CIFS
 - WebDAV
 - HTTP based Dropbox-style system (e.g. CloudStor+, OwnCloud)

Systems to fill universal roles – Sources of Truth

- Authentication and Authorization
 - Institutional Authentication is always preferable where possible
 - Specifics of attaching applications and systems should be available
- Researcher Metadata
 - Institutional Repositories
- Dataset Metadata
 - A potential problem, Some local schema needed
 - Requirements will vary based on project types

Systems to fill universal roles – Side note on database permissions

- Ensure that applications have unique database users
 - Safety & Security
 - Access monitoring

Systems to fill universal roles – Methods of Interaction

- User Interface
 - HTML based interfaces
 - Datastreams
- Application Interfaces
 - ETL (e.g. ReDBox, Pentaho Kettle)
 - This is where the bulk of the work lies
 - Schema transformations

Thank you