

FLUKE networks

The importance of Wireless today

- Increasingly in the Corporate Environment, Wireless is becoming an enabling technology to facilitate workforce mobility.
 - There are dangers!
 - Design of the network needs to be correct.
 - · Security needs to be considered
 - Monitoring is a must
 - Troubleshooting can be difficult.

Before we start designing!

- · Understand what applications and their requirements
 - Min coverage signal strength
 - coverage redundancy
 - max noise floor
 - interference tolerance
 - min data rate
 - User capacity
 - 802.11n
 - Channel bandwidth (20MHz/40MHz)
 - Operation mode (Legacy, mixed, green field)
 - MIMO streams and MCS`

The Wireless Network

The Wireless Network

Business-Critical
Applications

Security | Performance |
Compliance

Wireless LAN Infrastructure

FLUKE networks

The Design

- This is where the problems start, too frequently!
 - Suck it and see approach!
 - If we stick an AP here we should have coverage!
 - If not, we can add another AP
 - Run another GPO in to power it
 - Select any channel for the AP, mainly in 802.11 b/g band
 - » Only 3 non overlapping channels in b/g, Channels 1, 6 and 11
 - Leave the power turned right up
 - » Brute force approach
 - What "a" band?

The WiFi design Dork!

- Sticks Access Points to parts of an office layout with Velcro and Cable ties.
- Walks around with a PC looking at signal strength bars and connectivity drop outs.
- Tends to use freebie tools.

WRONG! Where is the science here?

5

FLUKE networks.

The Design

- · A structured, scientific approach is required.
 - Use professional tools!
 - Survey the environment first
 - Don't go in blind!
 - · Plan for the deployment
 - Simulate your coverage
 - Estimate the throughput rates from various locations
 - Generate a professional set of documents covering the deployment.

FLUKE networks.

The Survey

- Key Reasons to do a WLAN Survey
 - Efficient use of WLAN Infrastructure
 - Understand the properties of location
 - Wireless environments change
 - Performance driven applications in the network
 - Their requirements need to be considered.

7

FLUKE networks.

The Survey

- We need to achieve a complete accurate picture of WiFi Visibility.
 - Confirm coverage area, see black spots and potential interference areas
 - Measure real-world client performance in terms of connection speed, packet los and end-user capacity
- Output the result to the client in a clear intelligent manner.

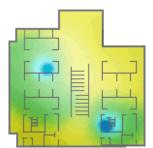
The Survey

Multiple Surveying Methods

Passive Surveys

- · Overview of the entire wireless environment
- Includes sources of noise and any wireless signals from neighboring networks

Active Surveys

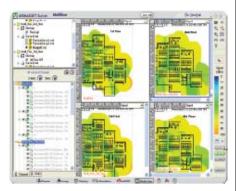

- Measure and map actual end-user network performance Associates to a specific AP
- See how users will perform in the "real-world"

Iperf Surveys

- Measure uplink/downlink end-user WLAN performance
 Mandatory for 802.11n deployments

Voice Surveys

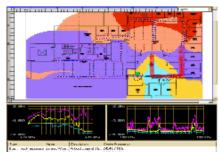
Validate phone call quality and other voice statistics on the floor



FLUKE networks.

The Survey

• Try to achieve a Multi-View of the site


- · Helps re-use services of a single access point for multiple floors
- Lower equipment and deployment
- · See the effects of APs across multiple floors
- · Compare active surveys to passive designs to improve modeling accuracy.
 - More on modeling shortly.

The Survey

- Don't forget a Spectral Analysis
 - There are things out there in the WiFi frequency range that are not part of the network, but they will affect the networks performance:
 - Microwave Ovens
 - > Hand portable phones
 - Bluetooth Devices
 - Wireless Modems

11

FLUKE networks.

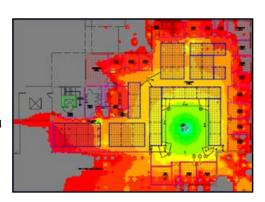
The Survey

- Deploying an outside network?
 - Make sure your survey tool accepts GPS data
 - Accept Maps in common formats
 - Potential export to Google Earth.

The Survey

- 802.11n site survey challenges
- 11n Fundamentally Changes WLAN Survey
- MIMO and many other options that impact performance are locationspecific, making signal strength not an accurate indicator of performance
- 11n Requires Active Surveying
- Use iPerf functionality to actively test both uplink and downlink performance

13

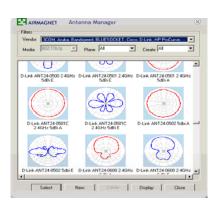

Planning the Network

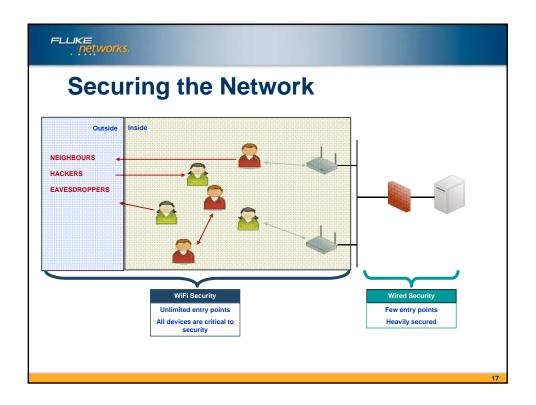
- · A complete survey is only half the battle.
 - We now know what is there.
 - What we do not know is how our deployment will work.
 - · Using a planning/modeling tool offers many advantages
 - Uses building floor plans
 - Allows simulated placement of APs
 - Allows experimentation with Antenna designs and AP output power settings
 - Allows experimentation on the effects of furniture and office lay outs
 - Generates a 'Heat Map' of Network coverage

FLUKE networks

Planning the Network

- Using a modeling tool gives many benefits to the designer
 - Optimised AP count
 - Optimised layout and configuration for maximised coverage and performance.




15

FLUKE networks.

Planning the Network

- Knowing the Antenna Radiation pattern is important.
 - By modifying the antenna we can alter the WiFi coverage of the AP
 - Most APs come with Omni Directional antennas
 - Black spots can be covered with directional antennas
 - Radiation outside you building can be regulated by changing antenna designs

FLUKE networks.


Securing the Network

- Some of the common threats we have to defend the network from:
 - Rouge AP or Station
 - Penetration Attack
 - Honeypot AP. Man-in-the-Middle, Aircrack, ASLEAP
 - Dictionary Attacks, Hotspotter, etc.
 - Denial-of-Service Attacks
 - 802.11/802.1x Protocol Attacks against AP/Station
 - RF jamming against WiFi infrastructure

Securing the Network

- Configuration Vulnerability and Policy Violation
 - Enterprise authentication and encryption scheme
 - AP SSID bcast, Config Changes, Default Config
 - Client Ad-hoc mode, Exposed WiFi, Unauthorised Association
- WiFi Anomalies
 - After-hour traffic
 - Excessive 802.11 packet fragmentation
 - Netstumber, Wellenwreiter probing
 - Protocol fussing

FLUKE networks,

Securing the Network

- Choose best practices when looking at Security protocols and Encryption.
 - Two Way Authentication
 - Strong Encryption Algorithms
- Considered best practice at the moment?
 - WPA2/802.11i
 - Uses 802.1X Radius for two way Authentication
 - Strong Encryption

Securing the Network

 Comparison between commonly used WiFi Security mechanisms

Standard Name	WEP	WPA	802.11i/WPA2
Encryption Type	WEP	TKIP	CCMP
Cipher	RC4 40 or 128 bits 24 Bit IV	RC4 128 Bits 48 Bit IV	AES 128 Bits 48 Bits IV

More reading:

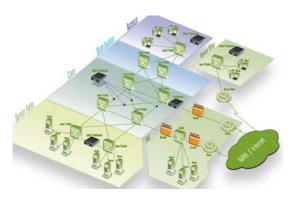
http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html

22


Monitoring the Network

- The network is now installed and in production, we now need to consider monitoring that network.
 - Who is on my network?
 - · What are they doing?
 - Are there any new WiFi networks coming up?
 - Source of interference and performance drop
 - Am I under Attack?
 - · Who is doing it and where are they?
 - Do I have a rougue AP?
 - Where is it and who did it?

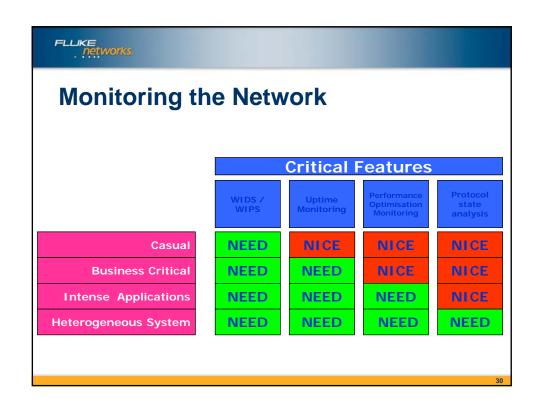
- Remember, the infrastructure <u>can not</u> monitor itself. Self protection is NOT effective, you need to be pro-active.
 - Network infrastructure is designed to effectively move and control protocol traffic and application data.
 - Network monitoring equipment is purpose built to analyse traffic behaviour.
 - Points of presence effective network monitoring requires inspection where problems occur.


25

Distributed Traffic capture – Effective, Proven Overlay Architecture

Great compliment to Network IDS and Wireless IDS.

27


Monitoring the Network

- We also need to consider the WiFi Networks operating mode.
 - <u>Casual</u> WLAN used for complimentary connectivity to enable employee mobility, guest internet access, hotspot service.
 - <u>Business Critical</u> WLAN used to support critical real-time business applications.
 - <u>Intense Applications</u> WLAN used for applications / devices with strong QoS requirements.
 - <u>Heterogeneous System</u> WLAN devices from several vendors blended into multi-function application platform.

FLUKE networks.

Monitoring the Network

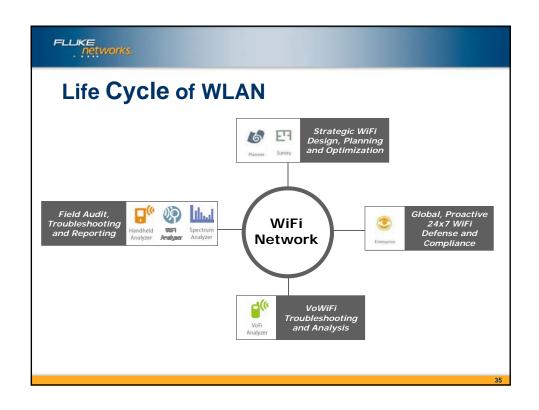
- With each operating mode, there are issues to be addressed
 - Casual Comprehensive WIDS
 - <u>Business Critical</u> <u>PLUS</u> uptime monitoring, remote troubleshooting.
 - <u>Intense Applications</u> <u>PLUS</u> performance optimisation monitoring.
 - <u>Heterogeneous System</u> <u>PLUS</u> detailed protocol state analysis.

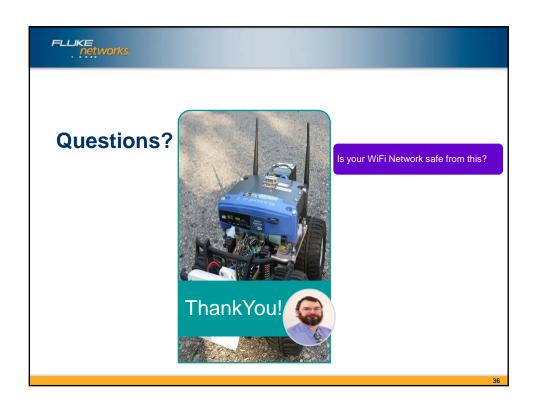
- Important Monitoring recommendations
 - 24/7 dedicated overlay system
 - You don't miss a thing, part time AP based... you may miss something critical
 - Look for Historical data collection
 - Gives forensic post analysis capability, you didn't have to be watching the screen when the event happened.

31

Monitoring the Network

- Important Monitoring recommendations
 - Very Deep WIDS Event Detection capability
 - Find every WiFi attack and hack currently known
 - Look for comprehensive reporting
 - The "Boss" report, regulatory compliance PCI, SoX
 - Ability to integrate with existing solutions
 - Enterprise NWM system


- Important Monitoring recommendations
 - Be able to detect, locate and remotely remediate rogue
 APs and client devices.
 - · Wireless Blocking, wired tracing and port killing
 - For an Enterprise system, to be remotely accessible
 - Troubleshoot and investigate from Head Office
 - Spectrum Analysis Capability
 - It may not be a WiFi problem


22

In conclusion

- Wireless is becoming an important part of today's Enterprise Network fabric.
 - You need to check the environment before deploying your solution.
 - Your solution should be designed scientifically for not only today's requirement but also for the future.
 - Monitor your wireless network just as you would your wired network.

