
Copyright © AARNet, 2004

aarnet
Australia's Academic
and Research Network

Achieving high performance file transfers
across gigabit networks

QUESTnet, 2005-07-07
Coolum

Glen Turner

aarnet

→

Copyright © AARNet, 2004

AARNet’s links to overseas research networks

aarnet

→

Copyright © AARNet, 2004

Packet

Ethernet IP TCP Data

Link layer Network layer Transport layer

aarnet

→

Copyright © AARNet, 2004

Filling the pipe and window size

+-------------------------------+-------------------------------+
| Source port | Destination port |
+-------------------------------+-------------------------------+
| Sequence number |
+---+
| Acknowledgement number |
+-------+-----------+-----------+-------------------------------+
| H len | |U A P R S F| Window |
+-------+-----------+-----------+-------------------------------+
| Checksum | Urgent pointer |
+--- --- --- ---+--- --- --- ---+--- --- --- ---+--- --- --- ---+
| Option=NOP | Option=NOP | Option=TS | Opt len=10 |
+--- --- --- ---+--- --- --- ---+--- --- --- ---+--- --- --- ---+
| Timestamp option: timestamp value |
+--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---+
| Timestamp option: timestamp echo reply |
+--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---+
| Data |
. .
+---+

aarnet

→

Copyright © AARNet, 2004

Window size: how much to send

• The advertised window reflects the amount of free buffer in
the host

–Small amounts of free buffer are not advertised

• “silly window syndrome”

• The transmitter can safely send this much data

aarnet

→

Copyright © AARNet, 2004

Window size constrains throughput

• Let’s advertise 64KB of window

–The naïve maximum

• But a 1Gbps pipe 100ms long can contain 12,200KB of data

• The Window scale TCP option can be negotiated at the start
of a connection

–65536 × 2s = 12,200KB
s = 7

• The window size is a measure of throughput, since
throughput = window ÷ round trip time

and round trip time is reasonably constant for a connection

aarnet

→

Copyright © AARNet, 2004

How much buffer do we need?

• We need enough to “fill the pipe”

–We desire
tcp throughput = link bandwidth

and
 window = congestion window

Since
tcp throughput = window ÷ round trip time

We get
congestion window = bandwidth × round trip time

• This result is so important it has a name
bandwidth–delay product

aarnet

→

Copyright © AARNet, 2004

Calculating buffer

• Calculate bandwidth–delay product
1Gbps ÷ 8 × 0.242s = 29MB

• Operating systems defaults

–Windows Xp 8KB 0.02% of 29MB

–Linux 32KB 0.11% of 29MB

$ ping www.internet2.edu
 64 bytes from www.internet2.edu: time=242 ms
 64 bytes from www.internet2.edu: time=241 ms
 64 bytes from www.internet2.edu: time=241 ms
 64 bytes from www.internet2.edu: time=242 ms

• Discover round trip time

aarnet

→

Copyright © AARNet, 2004

Configuring buffer in Linux

• Edit /etc/sysctl.conf

• Increase window scaling
net.ipv4.tcp_adv_win_scale = 7

• Increase maximum allowable socket buffers
net.core.wmem_max = 30408704
net.core.rmem_max = 30408704

• Increase TCP buffers
net.ipv4.tcp_wmem = 4096 65536 30408704
net.ipv4.tcp_rmem = 4096 87380 30408704

• Automate buffer tuning
net.ipv4.tcp_moderate_rcvbuf = 1

• Best documentation is in the Web100 kernel patch file
README.web100

aarnet

→

Copyright © AARNet, 2004

Configuring buffer in Windows Xp

• Registry settings
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters]

• Enable window scaling and timestamps
Tcp1323Opts 3

• Increase window size
GlobalMaxTcpWindowSize 30408704
TcpWindowSize 30408704

aarnet

→

Copyright © AARNet, 2004

Transmit scheduling and round trip time

+-------------------------------+-------------------------------+
| Source port | Destination port |
+-------------------------------+-------------------------------+
| Sequence number |
+---+
| Acknowledgement number |
+-------+-----------+-----------+-------------------------------+
| H len | |U A P R S F| Window |
+-------+-----------+-----------+-------------------------------+
| Checksum | Urgent pointer |
+--- --- --- ---+--- --- --- ---+--- --- --- ---+--- --- --- ---+
| Option=NOP | Option=NOP | Option=TS | Opt len=10 |
+--- --- --- ---+--- --- --- ---+--- --- --- ---+--- --- --- ---+
| Timestamp option: timestamp value |
+--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---+
| Timestamp option: timestamp echo reply |
+--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---+
| Data |
. .
+---+

aarnet

→

Copyright © AARNet, 2004

When should the sender transmit the next segment?

• So it arrives just as the receiver is ready for it

• We need a good estimate of the round trip time

• Each Ack contains a sample of the round trip time
rtt = now() - Timestamp echo reply

• We smooth this estimate of the round trip time
srtt

n+1
 = α rtt + (1- α)srtt

n

• And calculate the variance of the estimate
rttvar

n+1
 = β | rtt – srtt

n+1
| + (1 – β) rttvar

n

• There is an Ack for every two packets send, so you can look
upon this estimate as being maintained by an “Ack clock”

aarnet

→

Copyright © AARNet, 2004

When should the sender re-transmit a segment

• When the Ack is delayed

• Most TCP implementations use an Ack receive time out of
rto = srtt + 4 × rttvar

• Which is why TCP is bad on wireless LANs. The jitter from
the CTS/RTS operation of 802.11 leads to (4 × rttvar)
overwhelming the estmate.

• You see rtos of up to 10s

• It then takes TCP a long time to detect a single packet loss, a
common event in a WLAN

aarnet

→

Copyright © AARNet, 2004

Ack back-traffic

• A 1Gbps file transfer will generate

–13Mbps or Acks with ethernet frames

–2Mbps of Acks with jumbo frames

• If BGP path asymmetry leads to the Acks being congested
then the transfer is slow

• Particularly a problem with Internet2 sites, as these connect
to a commodity ISP and I2 (I2 doesn’t do commodity traffic,
unlike AARNet)

–Traffic goes down 10Gbps research link

–Acks come up commodity link. If that link is 2-10Mbps
there can be problems

aarnet

→

Copyright © AARNet, 2004

Network design and RTT estimate

• Elements of network design can degrade the RTT estimate,
leading to poorer performance than the “headline” 1Gbps

–Loss

• RTT estimate is only good in TCP steady state

–Jitter needs to be low

• Router design

• Link load

–Symmetric paths

• BGP configuration

–Queuing and Ack compression

• Queuing algorithms and QoS packet sizes

aarnet

→

Copyright © AARNet, 2004

Congestion control and loss

+-------------------------------+-------------------------------+
| Source port | Destination port |
+-------------------------------+-------------------------------+
| Sequence number |
+---+
| Acknowledgement number |
+-------+-----------+-----------+-------------------------------+
| H len | |U A P R S F| Window |
+-------+-----------+-----------+-------------------------------+
| Checksum | Urgent pointer |
+--- --- --- ---+--- --- --- ---+--- --- --- ---+--- --- --- ---+
| Option=NOP | Option=NOP | Option=TS | Opt len=10 |
+--- --- --- ---+--- --- --- ---+--- --- --- ---+--- --- --- ---+
| Timestamp option: timestamp value |
+--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---+
| Timestamp option: timestamp echo reply |
+--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---+
| Data |
. .
+---+

aarnet

→

Copyright © AARNet, 2004

Congestion control

• TCP’s congestion control is why the Internet is stable

• Avoid congestion collapse

–Detect congestion and slow down radically

–Don’t send lots of packets until congestion can be
detected

–Congestion is detected by Ack timeouts

aarnet

→

Copyright © AARNet, 2004

Life of a TCP connection

• “Slow start” probing to find RTT estimate

• TCP enters steady state with an incoming Ack for every two
outgoing segments, this Ack clock determining when the next
segment is sent

• Occasional probes to see if more bandwidth available

aarnet

→

Copyright © AARNet, 2004

Loss

• An Ack is lost or late (rto has expired)

• “Slow start” is re-entered to determine a new RTT estimate

–Throughput plummets

–As bandwidth increases TCP takes longer to return to a
steady state which uses the maximum bandwidth

–At 1Gbps this can be an hour

• If three Acks arrive for the same segment, then a single
packet has been lost. Re-transmit it and halve the window

–Throughput reduces

aarnet

→

Copyright © AARNet, 2004

Synchronisation

• Congestion or loss effects lots of connections simultaneously

• They all back off, they all probe, they all ramp up, congestion
re-occurs

–Oscillation of throughput

–All protocols which have a long-tailed distribution are
vulnerable to oscillation, not just TCP

• We want to distribute network events in time

–Can’t do much about loss

–For congestion let’s drop packets with an increasing
random probability as we get near the end of the queue

–Random early detect

aarnet

→

Copyright © AARNet, 2004

Loss or congestion?

• Routers drop packets when they exceed the queue

• Loss drops packets too

–These could be re-transmitted immediately

• TCP must treat a late Ack as congestion not as loss

–Otherwise congestion collapse of the Internet

• Explicit congestion notification allows TCP to be signalled
about congestions

–Presumably all other late Acks are loss

 fair queue drop with p drop all
 |--------------------------------|---------------|

 fair queue mark ecn with p drop with p drop all
 |----------------------|---------------|-------------|

aarnet

→

Copyright © AARNet, 2004

Network design and loss

• Banish loss

–Clocking errors

• Exactly one clock on a link

–Ethernet autoconfiguration

• Turn it on, at both ends

• Turn it off, at both ends

–G.703 and optical power budgets

–Graph CRCs and carrier loss for interfaces

–Gigabit wireless. Hmmm.

• Use fair queuing with random early detect to control
synchonisation

• Support ECN

aarnet

→

Copyright © AARNet, 2004

Maximum transfer unit

9000

1500

aarnet

→

Copyright © AARNet, 2004

Path MTU

• The largest packet which can be successfully sent across the
path connecting the two hosts

• We want this to be big

–The receiver has a lot of work to do per packet so
sending less packets is good

–Neterion testing, reported last week on netdev

• MTU=9000 30% CPU on quad Opteron at 10Gbps

• MTU=1500 Machine dies

–Mathis’ formula says that increasing MTU is the only
realistic option for increasing TCP performance

aarnet

→

Copyright © AARNet, 2004

Mathis’ formula

• mss is maximum segment size, say 1460B

• rtt is round-trip time, say 260ms

• p is loss probability, say 10-11%

• rate is maximum throughput

ratemss
rtt
× 1
 p

aarnet

→

Copyright © AARNet, 2004

Exceeding the upper bound

• Reduce round trip time

–Speed of light in fiber is dropping by 5% per decade

• Reduce loss probability

–But increasing DWDM channel bandwidth increases loss
probability

–So manufacturers aim for ITU compliance

• Increase MTU

–One product cycle from router and switch vendors

aarnet

→

Copyright © AARNet, 2004

MTU and network design

• Specify jumbo frames in purchases

• Configure routers to use the maximum link MTU on router-
router links

–Want to present all those 9000 bytes to the host, not steal
them for MPLS, GRE, etc

• Middle-boxes have less support than switch manufacturers

–Firewalls especially

• Not all hosts do jumbo frames

–What are Apple thinking?

aarnet

→

Copyright © AARNet, 2004

Exotic TCP

aarnet

→

Copyright © AARNet, 2004

Limitations of TCP

• Additive increase is too slow for long fat pipes

• Multiplicative decrease is too much for most congestion
events

• Needs zero loss and zero congestion to achieve link
bandwidth

• Packet loss causes oscillation as only signal is arrived or late

• Prone to cause link bandwidth oscillation

aarnet

→

Copyright © AARNet, 2004

BIC-TCP

• Replaces slow start with a binary search

–Double the information per probe packet

• Once close it logarithmically approaches upper bandwidth
estimate

–Less overshoot, preventing sawtooth

• Loss causes a return to previous binary search state

• Will rapidly discover free bandwidth

–Say from another transfer finishing

• TCP-friendly at high speeds, unfair at dial-up speeds

• The default in recent Linux

–Experience is good

aarnet

→

Copyright © AARNet, 2004

FAST TCP

• An equation-driven algorithm which uses queuing delay as
the measure of congestion

–Queuing delay is less binary than loss, limiting oscillation

–It is independent of the window size

–Can be input to gain equation rather than an algorithm

• These have better control of gain, limiting sawtooth
oscillation at link capacity

aarnet

→

Copyright © AARNet, 2004

FAST TCP

• Not only an implementation, but an architectural renovation

• Independent algorithms for

–loss recovery

–window control (RTT timescale)

–burstiness control (sub-RTT)

• Unlike TCP which conflates them, making improving any one
of them difficult

• Not finished

–Not yet TCP friendly

–Does not yet discover increased bandwidth

aarnet

→

Copyright © AARNet, 2004

Others

• HDTCP and STCP

–These both have differing gain functions then standard
TCP

–Making response to congestion more rapid

–Allowing a closer estimate of the link bandwidth

–But have all the other problems of TCP

• Westwood TCP

–Uses incoming Acks to estimate packet rate and initialise
slow start settings upon loss

–Good for lossy environments like WLANs

aarnet

→

Copyright © AARNet, 2004

Web100 www.web100.org

aarnet

→

Copyright © AARNet, 2004

System considerations

aarnet

→

Copyright © AARNet, 2004

CPU

• AMD Opteron, for the next two years until Intel get their act
together

• Large MTU reduces the number of packets processed by the
TCP receiver

• PCI bus

–PCI-X 1.0 7.5Gbps

–PCI-X 2.0 10Gbps

aarnet

→

Copyright © AARNet, 2004

Disk drives

• SATA disk runs at 1.5Gbps
SATA II disk runs at 3.0Gbps

• SAS runs over SATA link layer

• Native command queuing is a huge win for servers, but not
for one single process doing a sequential read

• Speed/capacity/physical size trade-off

–7200RPM 3.5in is about 160GB

–15000RPM 2.5in is about 36GB

• Form factor is about to move to 2.5in, that is 60TB per rack

–Implications for power density in computer room

–Implications for connect technologies

aarnet

→

Copyright © AARNet, 2004

IDE versus SCSI

• Now SATA II versus SAS

• SATA II was designed to better SCSI/SAS

• Somewhat pointless, since manufacturers are using SAS v
SATA to segment the marketplace into server and client

–Except for Western Digital

aarnet

→

Copyright © AARNet, 2004

Disk attach

• No obvious winner

–Fiber Channel is slow

–SATA can be switched, but no product

–iSCSI has a lot of overhead

–ATAoE looks attractive, but is there enough CPU to run
this, the TCP stack and the disk subsystem?

aarnet

→

Copyright © AARNet, 2004

Ethernet adapters

• Features: checksumming, TSO, interrupt coalescing, lots of
buffer, jumbo frames

• 1Gbps Intel Pro/1000 Server MT

• 10Gbps Neterion (was S2IO) Xframe II

• State-full TCP offload adapters are not really suitable for this
task, since these cannot take advantage of high performance
variants of TCP protocols

–Chelsio T210

• Duds: RealTek 8110- and 8160-series of GbE NiCs, early
Intel GbE NICs

aarnet

→

Copyright © AARNet, 2004

Disk subsystems

• A single SATA II 10,000RPM disk will do about 460Mbps

• So we need to write to multiple disks simultaneously to
improve the throughput

• RAID0 striping

• RAID1 + RAID0 striping and mirroring

• A good RAID5

aarnet

→

Copyright © AARNet, 2004

PCI bus

• PCI-X 1.0 7.5Gbps

• PCI-X 2.0 10Gbps

aarnet

→

Copyright © AARNet, 2004

End

