

Agenda

- Trends in (wireless) LAN security
- 802.1X network architecture

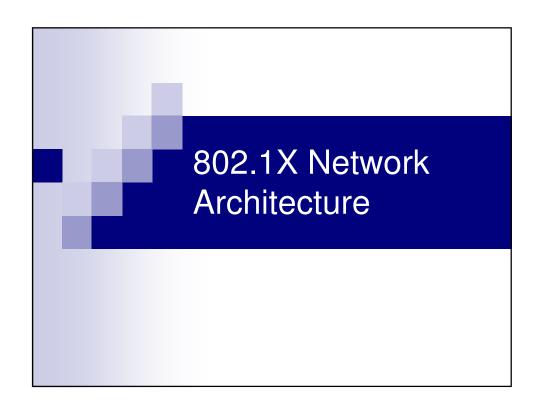
Trends in LAN Security

Ow! The Cutting Edge of 802.11

- High density & high capacity networks
 - □ 802.11a is very helpful here
- Improving security while retaining usability to wired backbone
 - □ Admission control: Keep your infestations out of my network
- Differentiated access and policy implementation
 - $\hfill\Box$ Also differentiated service (e.g. voice)

Trends in LAN Security

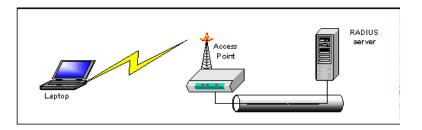
- Movement of security to the edge
 - ☐ If port ≠ user, now what?
- Proliferation of access devices
 - □ Not just laptops any more
 - Need to protect network from devices
- Mobility
 - ☐ This is not just wireless—users have many networks
 - □ Cannot depend on always being connected to the infrastructure
- Differentiated access
 - □ Not only internal groups, but contractors



802.11 In Education

- Network is mostly open
 - Some network pockets need to be protected (e.g. registrar, finance networks)
- Network is balkanized
 - Cooperation between feudal lords (network administrators) may be impossible
- High degree of mobility
 - Session maintenance may be more important than in other environments
 - Corollary: political problems of networking may prevent it from happening
- Users may have a "real job"
 - Professional development students may need to VPN to work, for example

Why 802.1X? Establishing user identity can build a better network Uses RADIUS, which is very flexible Authorization: who you are controls what you can do Applications: voice needs security integrated into handoff process, and low-latency encryption


- Does not require network redesign
 - ☐ Architecture does not have to be hierarchical
 - □ Can help build networks between warlords (network administrators)

Physical Architecture

- Supplicant: End user device. Usually a computer, but may be printer, PDA, etc.
- Authenticator
 - Network device that blocks access until user authentication completes (more on this later)
 - ☐ May be AP for wireless networks, or switch on wired networks
- Authentication server: typically RADIUS

Authorization

- First, establish identity (authentication)
- Then, figure out what user is allowed to do (authorization)
 - ☐ The neglected second "A" in AAA
- With RADIUS, this is done with attributes
 - □ Assign users rights to resources and network access
 - Examples: VLAN number (see RFC 3580), session timeout, Access control lists/personal firewall
 - ☐ Many servers can rewrite attributes via proxy
- Any existing access control between networks is automatically applied to users

Back-end Databases & RADIUS

- No new wireless user accounts!
- Common back-ends
 - □ Active Directory/NT domain
 - □ LDAP
 - □ Kerberos
- May also be specialized for certain purposes
 - □ TACACS for routers, token cards for key resources
- Choosing the authentication protocol may depend on how password is stored
 - ☐ Yes, I am skipping over this

Large-Scale RADIUS

- Problems of large/distributed environments
 - Lots of APs
 - ☐ Different administrative zones (political boundaries get in the way)
- "Roaming" is possible by passing requests between two networks
 - ☐ Similar concept to mobile phone roaming (like the way that my T-Mobile USA phone is working right now)

RADIUS Star Architecture

- Multiple networks under separate administrative control
- Each network has a server
 - Some requests are handled locally
 - Unknown users are passed to other servers
 - Core server is an "identity router" for authentication requests
- We have a mini-version of this in the iLabs

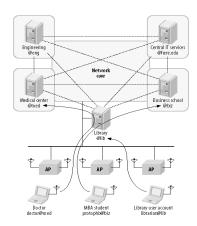
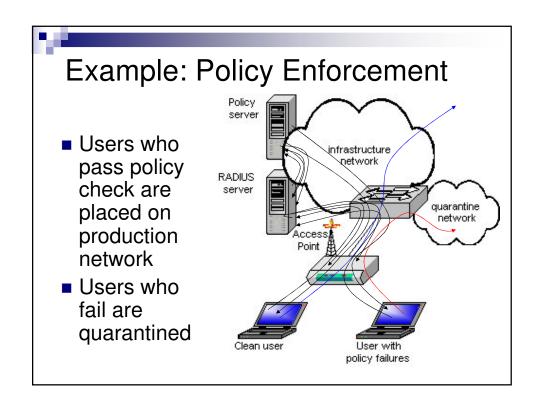
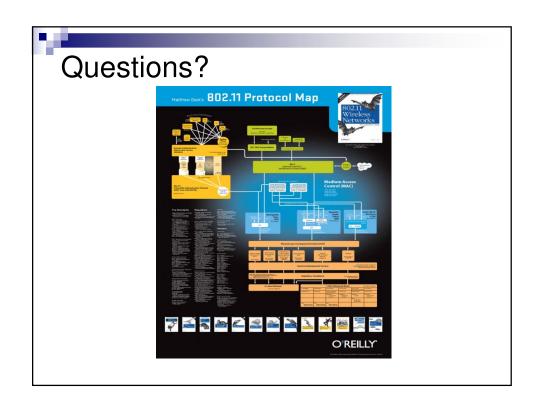


Figure used with permission from 802.11:TDG, 2nd Ed

RADIUS Proxy Between Organizations

- Good for guest authentication
 - ☐ Ask visitor's employer to establish identity
 - □ Requires trust between organizations
- This is sometimes called "federated" authentication
 - □ Separately built & run networks
 - ☐ Users can use any member network
 - ☐ Generally no seamless roaming between two member networks


Federated Authentication


- Eduroam (http://www.eduroam.org/)
 - □ European-wide RADIUS star
 - ☐ Also hooked into Australia R&E network
 - ☐ United States core built at University of Utah
- Internet2 project for U.S. network
 - □ http://security.internet2.edu/fwna/
- General description of the technical issues:
 - □ http://www.oreillynet.com/pub/a/wireless/2005/01/01/ authentication.html

Extended Authorization

- The Paris Hilton principle: users do not always deserve what they inherit
 - □ Basic authorization (e.g. VLAN) is static
- Limits on authorization may be useful
 - □ Area: guests are only allowed in the lobby
 - ☐ State of machine (integrity)
 - $\hfill \square$ Software version or running applications
- Two part authorization
 - ☐ #1: You must be an authorized user
 - □ #2: You must ALSO meet our admission policy

