Internet Flow Control - Improving on TCP

Glynn Rogers

The Team - Jonathan Chan, Fariza Sabrina, and Darwin Agahari

CSIRO ICT Centre

Why Bother? - Isn't TCP About as Good as It Gets?

- Well, TCP is a very successful protocol
 - Stability of the current Internet is owed to TCP
- But TCP has increasingly evident problems
 - The well known problems with wireless links
 - In congestion avoidance mode, on large delay-bandwidth product links, it can take thousands of RTTs to recover from a packet loss ie an hour or more
 - Indeed on large delay-bandwidth links TCP is unstable ie it can oscillate severely.

- Upgrade TCP by modifying the congestion window increase method
 - Highspeed TCP, Scalable TCP, and BIC TCP
 - These still use packet loss as the signaling mechanism
 - · Susceptible to rapid window 'deflation' on large delay links
 - Even with RED must wait a RTT before effect is seen
- Alternative forms of TCP
 - Use queuing delay as congestion indication
 - · Avoids falling over the packet loss 'cliff'
 - TCP Vegas exists but does not appear to be used substantially
 - FAST TCP proposed by Caltech IETF Draft
 - · Uses RTT variation to sense queues
 - · 'equation based' no packet level oscillations
 - · Stable flow dynamics

But TCP is Only Part of the Picture

- From a packet by packet perspective TCP is the centre piece
- However from the perspective of long term flows (video etc) -
 - Need to consider the whole flow control system
 - · Link bandwidths and utilization
 - · Queue management tail drop, RED in various configurations
 - · packet scheduling algorithms
 - Many variants of each in the 'standard model' heterogeneous network
 - TCP window control must cope with this complexity
- Faced with this, perhaps TCP is about as good as it gets!

- In this era of easy over provisioning, perhaps not
- But Hank Kafka, Chief Architect, Bell South, 'guesstimates' that (unicast) Video over the Internet will increase average consumers demand per month by two orders of magnitude
 - This will 'overwhelm current Internet core technology'
 - He sees 'network management/traffic control' as part of the solution

Hank Kafka, "Drivers for Next Generation Networks", Optical Fibre Communications/National Fibre Optics Engineers Conference, Anaheim 2005

So Will Flow Control always be Crippled by Irreducible Complexity?

www.ict.csiro.au

- Perhaps not!
 - A recent article in Business Communications Review highlighted the popularity of MPLS based VPNs in large enterprise networks
 - · Also pointed out the need for complete QoS control on VPNs
 - This has been implemented by some enterprise networks
- Put this together with recent ideas on
 - overlay networks, user controlled lightpaths, virtualisation etc
- Maybe we begin to see the beginnings of a new Architecture
 - Oriented to long lived flows requiring QoS
 - Would sit alongside the current routed network
- Could tap into emerging fundamental ideas on complex systems architecture

John Bartlett and Rebecca Wetzel, "QoS over MPLS - the Complete Story", Business Communications Review, February 2006.

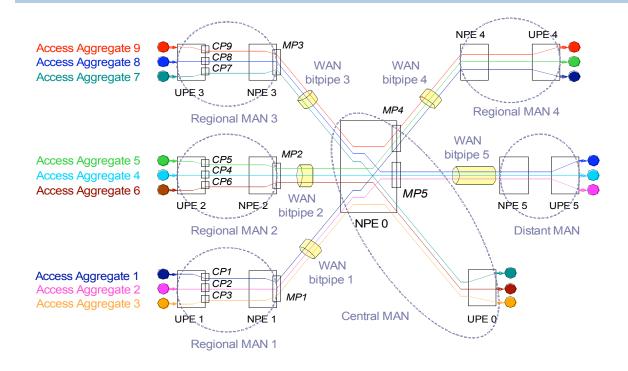
What sort of Components Might this Architecture Need?

www.ict.csiro.au

- Well, to start with, it would need well defined Classes of Service
 - A Premium Class with
 - · Guaranteed rates and latency
 - · Full admission control
 - Policing
 - Needs heavy handed management expensive
- So also need some form of automated rate control
 - as in TCP, ATM's Available Bit Rate concept etc
- But no (or minimal) packet loss for real time flows
 - Suggests queuing delay as congestion indication as in TCP FAST etc

Now We have a Problem with Long Lived Flows

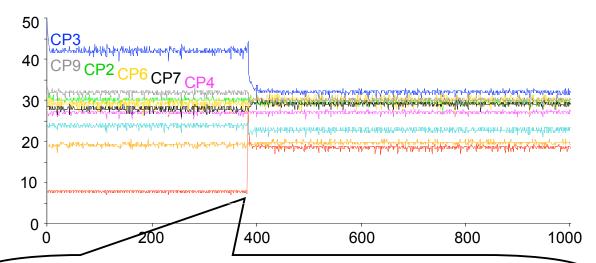
- Cannot rely on short timescale statistical fluctuations in load to maintain queue stability
 - Flows may come and go on longer timescales
 - Queues may grow alarmingly particularly during 'worst case' events
 - On large delay-bandwidth links queues may grow very large in a RTT
 - Result is unacceptable jitter at best


- Concept first aired in IETF's Integrated Services discussions
- Dimension the network to provide
 - 1. A Premium Class with reserved bandwidth
 - 2. An adequately provisioned traditional Best Effort Class
 - An Elastic Class provisioned to give 'good' service under expected conditions
 - Then two responses to sudden load increase
 - 1. Short term sacrifice some Best Effort performance
 - 2. Longer term apply control signals to sources
 - Provide incentive by offering a guaranteed minimum rate
- Yes, you have heard all this before somewhere ATM?

But Have We Avoided the Complexity Issues? - No? - OK, Next Move

- Distinguish between
 - 1. The issues associated with individual source control and
 - 2. The control of flow aggregates in the network core
 - This is consistent with the IETF's Diffserv concept
- We have left 1 to the experts (more or less) and focused on 2
 - Partition the overall network into external and internal components
 - Define a Flow Control Architecture based on
 - high speed local networks connected by fixed capacity pipes (MPLS LSPs etc)
 - Measurement Points at the pipe ingress points
 - Control Points at the access points to the internal network
 - Feedback signaled between the Measurement and Control Points
 - The Control Points
 - Calculate the required ingress aggregate rates at the access point
 - Divide this up fairly amongst its connected sources
 - Communicate with the sources

Flow Control


- Distributed, potentially nonlinear, feedback control system
- Major issues of convergence and stability
- Only way to do this properly is to use a mathematical model
 - Generic mathematical model developed at Cambridge by Frank Kelly and colleagues
 - Based on a constrained optimization of the utilization of the network resources
 - We have modified this a little
 - And used it for simulations and an analytical study of stability as well as the design of the flow control system

- Yes! At least in the small scale network we have been able to investigate
- We have built an NS2 simulation and an experimental network
 - This runs over the CeNTIE research network
 - It has one pipe with a large delay using the CeNTIE Perth link
 - · Remember delay is the Achilles heel of feedback control
 - It is based on Linux boxes for advanced functions
 - Eg reading packet counters at intervals of 10's of mSecs
- Agreement between simulation, experimental, and mathematical model results is surprising
 - Because the inevitable 'messiness' of implementation is not captured in the mathematical model
 - Suggests an encouraging degree of robustness

An Example of the Experimental Results

- Before this point flows into Control Point 1 are insufficient to fill available capacity
 - Other Control Points exploit the opportunity
- At this point new flows into Control Point 1 take up the capacity
 - Other Control Points must adjust accordingly

Note: - This is the Internal Network Only What about the External Component?

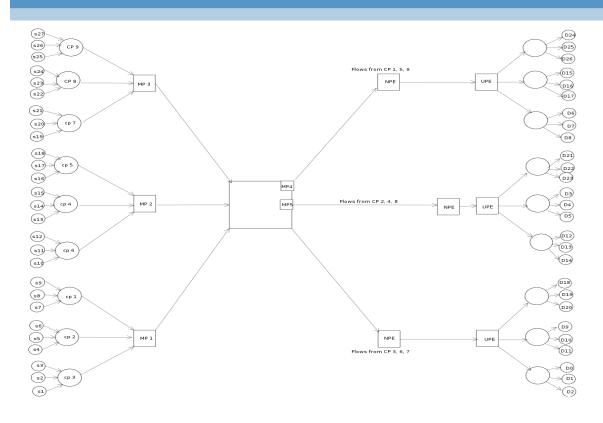
www.ict.csiro.au

- The experimental results are based on shaping of aggregate UDP streams at the access points
 - This I hardly a practical method
- We need now to consider the interaction between the Control Points and the individual sources.
- Could control TCP or variants by, for example,
 - Placing a buffer of size > N times the window size at the Control Point and shaping the output
 - · Very crude enormous delay but it works
 - Varying the receiver window size in the Ack packets
 - · Has been proposed in the literature
 - · Requires individual flow state at the Control Points
 - · Possible but not ideal

A Better Solution - XCP Explicit Control Protocol

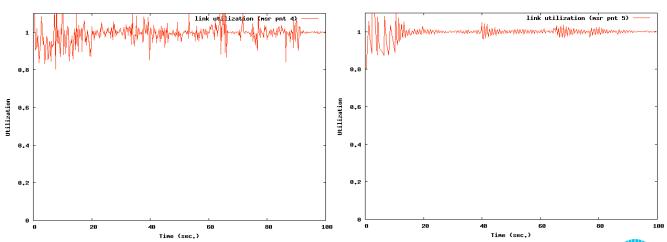
www.ict.csiro.au

- Developed by Dina Katabi (MIT) and proposed by MIT in an IETF Draft
 - XCP provides explicit from routers via a field in a congestion header
 - Rate control is separated from fairness
 - An Efficiency Controller in each XCP router determines the aggregate feedback from bandwidth deficit or excess
 - · A Fairness Controller divides this amongst the individual flows
 - · Places individual feedback value in Acks
 - · But does not require per flow state
 - Flow control is 'equation based' and the stability characteristics have been explicitly defined


Dina Katabi, Mark Handley, and Charlie Rohrs, "Congestion Control for High Bandwidth - Delay Networks", SIGCOMM'02, August 2002, Pittsburgh

- We could use it almost as is
 - The Efficiency Controller is determined by our flow control algorithm
 - The Fairness Controller needed some modification to account for our guaranteed minimum rate
 - Ditto the congestion header
- The Control Point and the internal partition then look like a single XCP router
- We have implemented this as an NS2 simulation of an end to end system
 - We hope to set an experimental implementation as a student project

The Simulation Scenario



Control Point	Maximum Aggrega Rate (Mbps)	ate Minimum Aggregate Rate (Mbps)
1	20	12
2	29	26
3	31	25
4	25	23
5	25	14
6	30	20
7	28	16
8	23	15
9	29	20

Ratios of Actual Rates to Target Rates at Measurement Points 4 and 5

- Elastic Class is allocated a target rate at a pipe ingress
- Control system seeks to maintain that target rate

