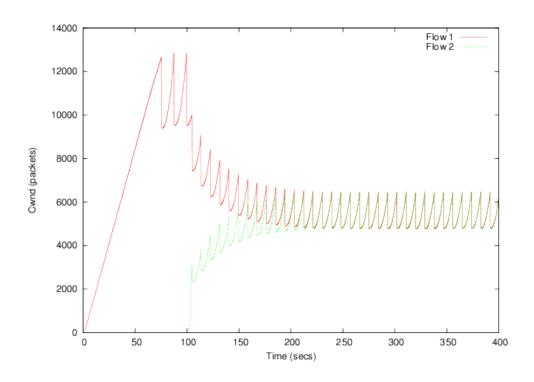
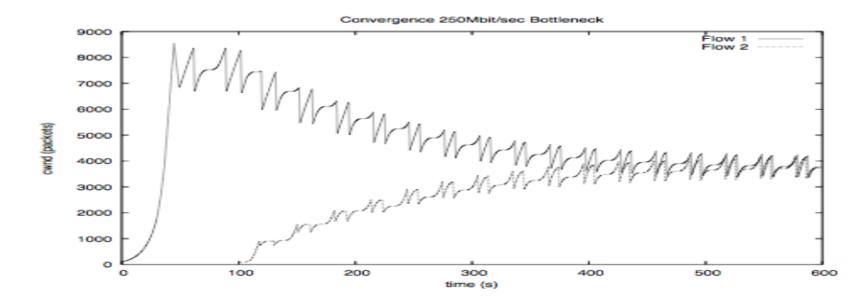


Applications and network performance

glen.turner@aarnet.edu.au



How long? 600ms


TCP basics

- Slow start
- Congestion avoidance

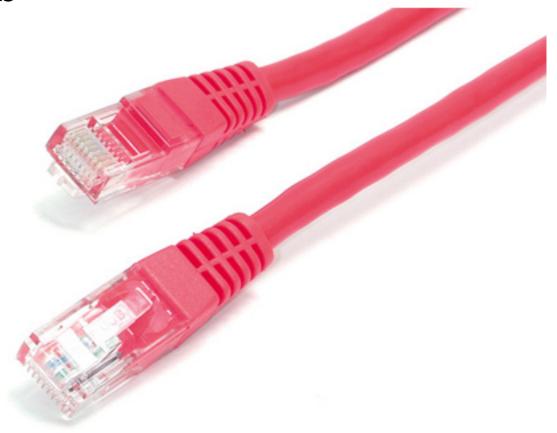
Inter-flow fairness

- Connections don't share bandwidth evenly
 - The size of the effect varies greatly by TCP algorithm
- So adding more connections may not improve the amount of data transferred
- Connections from further away always lose

Media bit error rate

Looks like congestion to TCP

If bad enough TCP never leads slow start

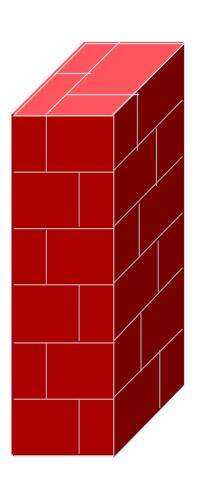

Pick the bottleneck

54Mbps WLAN with 3% loss

12Mbps ADSL with 0% loss

Configuration errors

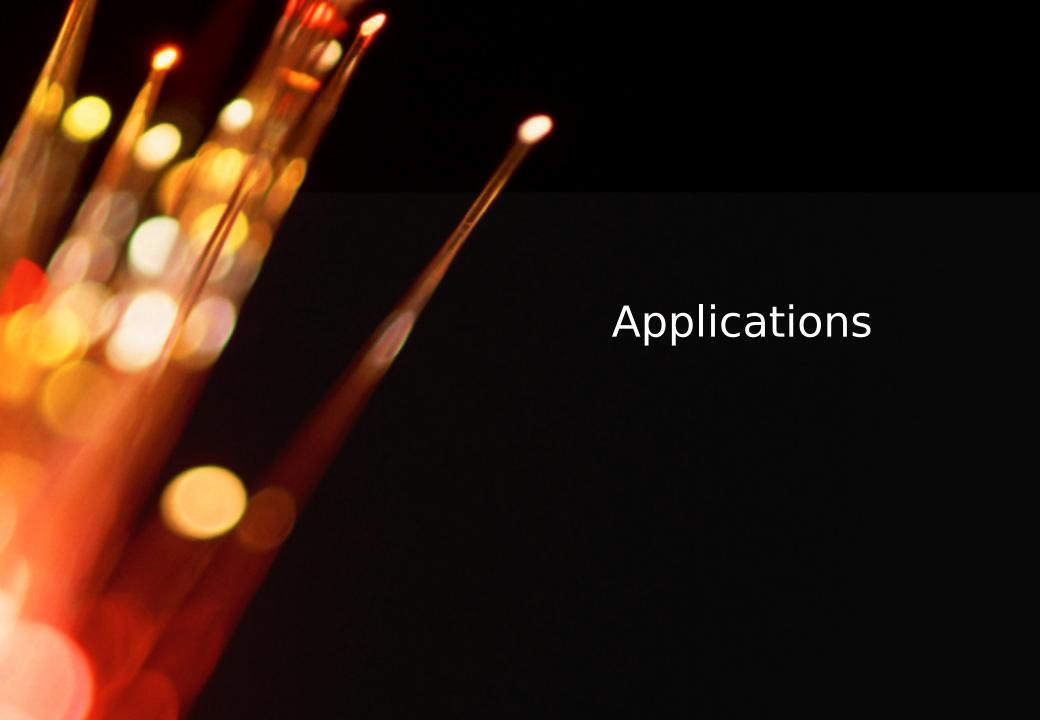
 90% fixed by not touching the speed and duplex knob


Routers are good

- Forwarding plane is in hardware
 - Low jitter
 - Accurate policing and shaping
 - Treating one flow doesn't effect other flows
- Big buffers
- Considered choice of queue algorithms
- Improving defaults

Except for one odd type of router

- These are usually PCs
 - Quantisation of output
 - Shaping leads to huge bursts upon clock ticks
 - Treating one flow adds jitter, or even loss, to another
- Small buffers
- Defaults are wrong
 - Queuing EF data in with BE data
 - FIFO rather than RED queues


Operating systems are better

- Good TCP implementations
 - Modern TCP algorithm
- TCP buffer auto-tuning is improving
- 64-bit operating systems make more than 0.5GB available to networking
- This is a systems administration challenge
 - You want to run Fedora Core in x86-64 mode, maybe with the Web100 kernel patch
 - You want to run Windows Vista, it has no server version
 - They are the very last place sysadmins want a production service

Computers are cheap

- In the worst meaning of the term
 - Gigabit ethernet adapters not running at 1Gbps
 - Disk I/O buses that won't bus, working with only one drive
 - RAID hardware that runs in BIOS software
 - Interrupt controllers that drop interrupts
- By the time you benchmark all this, your test platform is outdated

As seen on TV!

Make round trip times count

We can increase bandwidth but not the speed of light

Avoid application windows

- Application windows need to be larger than the bandwidth-delay product too.
- Writing one disk block or one window of disk blocks.
- Using a windowing mechanism

Loss of TCP estimates

- When your program is not sending data the TCP estimate is degrading
- When it degrades enough, slow start mode is entered

```
• while (running) {
    get_data(block);
    process_data(block);
}
```

 Use a reader thread and a writer thread with a BDP-sized buffer between them.

What TCP wants to do

- Stream data continuously from disk to the network
- Operating systems optimise this to one system call

```
sendfile (file, socket)
```

- If you do something different expect to fix performance problems, perhaps expensively
 - SSL accelerators for HTTPS
 - TCP offload adapters for iSCSI

Caches

- If moving data a long way is hard, let's cache it close to the user
- Has the performance problem simply moved to populating the cache?
- The cache needs to be closer to the user, measured using milliseconds, not kilometres
 - Seattle is often closer than Indonesia in round-trip time milliseconds

Systems design and loading

- TCP sender makes the decisions
- TCP receiver does the work
- So where do I place the application's load?
 - HTTP chose the client, since the server would then be simple enough to serve huge numbers of people
 - A server with just one client should take the load

Is your application a DoS attack?

- Does it use UDP?
 - Does it send more data than it receives prior to authentication?
 - Is it congestion aware?
 - What happens when the user holds the mouse down
 - Hint: don't open fifty 10Mbps connections

Constant bit rate sources

- Data acquisition devices run a analogue-digital converter and pump out n samples per second whatever else is happening
- Use UDP with congestion detection rather than TCP
 - TCP can enter slow start, which may have lower bandwidth than the sampling rate
- Not dropping the occasional sample is very difficult, even the operating system won't play a CD without drops when under load

Avoid negotiations

- TCP is trying to discover the available bandwidth, why is our application sending small, atypical packets.
- Compare
 - Telnet
 - Will, won't, Will, won't, ...
 - HTTP
 - This is what I want, do your best

Avoid minor transactions

FTP

AUTH GSSAPI	530
AUTH KERBEROS	530
USER anonymous	331
PASS	230
CWD pub	200
BIN	200
RETR afile.bin	150
QUIT	221

 These could have been a single chained transaction, as CIFS does

Move up the stack

- Compare the effectiveness of round-trip times between ODBC and SOAP and REST.
 - ODBC issues a single SQL statement
 - SOAP issues a single transaction
 - REST issues a part of a business function

Anticipate the entire transaction

- HTTP sends HTML, which is interpreted, which then requests style sheets and images.
- Style sheets can be provided with the HTML, so do that
 - Use a content management system so that this "hardcoding" is manageable
- A simple feature allows images to accompany the HTML text but it not used
 - This feature is used for HTML e-mail

API and programmers

- Why do the network APIs allow applications programmers to do the wrong thing. File I/O is buffered, why isn't network traffic.
- RPCs look like a function call. Chaining RPCs makes sense from a network layer, but breaks the abstraction presented to the programmer (chained function calls?). We need a new abstraction for the RPC mechanism, perhaps similar to parallel programming monitors.

