
Network Operations

Applications and
network

performance

glen.turner@aarnet.edu.au

2

How long? 600ms

3

TCP basics
• Slow start
• Congestion avoidance

4

Inter-flow fairness
• Connections don't share bandwidth evenly

– The size of the effect varies greatly by TCP algorithm

• So adding more connections may not improve
the amount of data transferred

• Connections from further away always lose

5

Network engineering

6

Media bit error rate
• Looks like congestion to TCP
• If bad enough TCP never leads slow start

12Mbps ADSL with 0% loss

54Mbps WLAN with 3% loss

Pick the bottleneck

7

Configuration errors
• 90% fixed by not touching the speed and

duplex knob

8

Routers are good
• Forwarding plane is in hardware

– Low jitter
– Accurate policing and shaping
– Treating one flow doesn't effect other flows

• Big buffers
• Considered choice of queue algorithms
• Improving defaults

9

• These are usually PCs
– Quantisation of output

• Shaping leads to huge bursts
upon clock ticks

– Treating one flow adds jitter, or even
loss, to another

• Small buffers
• Defaults are wrong

– Queuing EF data in with BE data
– FIFO rather than RED queues

Except for one odd type of router

10

Operating systems are better
• Good TCP implementations

– Modern TCP algorithm

• TCP buffer auto-tuning is improving
• 64-bit operating systems make more than

0.5GB available to networking
• This is a systems administration challenge

– You want to run Fedora Core in x86-64 mode, maybe
with the Web100 kernel patch

– You want to run Windows Vista, it has no server
version

– They are the very last place sysadmins want a
production service

11

Computers are cheap
• In the worst meaning of the term

– Gigabit ethernet adapters not running at 1Gbps
– Disk I/O buses that won't bus, working with only one

drive
– RAID hardware that runs in BIOS software
– Interrupt controllers that drop interrupts

• By the time you benchmark all this, your test
platform is outdated

12

Applications

13

Make round trip times count
• We can increase bandwidth but not the speed

of light

14

Avoid application windows
• Application windows need to be larger than

the bandwidth-delay product too.
• Writing one disk block or one window of disk

blocks.
• Using a windowing mechanism

15

Loss of TCP estimates
• When your program is not sending data the

TCP estimate is degrading
• When it degrades enough, slow start mode is

entered
• while (running) {
 get_data(block);
 process_data(block);
}

• Use a reader thread and a writer thread with a
BDP-sized buffer between them.

16

What TCP wants to do
• Stream data continuously from disk to the

network
• Operating systems optimise this to one system

call
sendfile(file, socket)

• If you do something different expect to fix
performance problems, perhaps expensively
– SSL accelerators for HTTPS
– TCP offload adapters for iSCSI

17

Caches
• If moving data a long way is hard, let's cache it

close to the user
• Has the performance problem simply moved to

populating the cache?
• The cache needs to be closer to the user,

measured using milliseconds, not kilometres
– Seattle is often closer than Indonesia in round-trip

time milliseconds

18

Systems design and loading
• TCP sender makes the decisions
• TCP receiver does the work
• So where do I place the application's load?

– HTTP chose the client, since the server would then
be simple enough to serve huge numbers of people

– A server with just one client should take the load

19

Is your application a DoS attack?
• Does it use UDP?

– Does it send more data than it receives prior to
authentication?

– Is it congestion aware?
– What happens when the user holds the mouse down

• Hint: don't open fifty 10Mbps connections

20

Constant bit rate sources
• Data acquisition devices run a analogue-digital

converter and pump out n samples per second
whatever else is happening

• Use UDP with congestion detection rather than
TCP
– TCP can enter slow start, which may have lower

bandwidth than the sampling rate

• Not dropping the occasional sample is very
difficult, even the operating system won't play
a CD without drops when under load

21

Avoid negotiations
• TCP is trying to discover the available

bandwidth, why is our application sending
small, atypical packets.

• Compare
– Telnet

• Will, won't, Will, won't, ...
– HTTP

• This is what I want, do your best

22

Avoid minor transactions
• FTP

– AUTH GSSAPI 530
AUTH KERBEROS 530
USER anonymous 331
PASS ... 230
CWD pub 200
BIN 200
RETR afile.bin 150
QUIT 221

• These could have been a single chained
transaction, as CIFS does

23

Move up the stack
• Compare the effectiveness of round-trip times

between ODBC and SOAP and REST.
– ODBC issues a single SQL statement
– SOAP issues a single transaction
– REST issues a part of a business function

24

Anticipate the entire transaction
• HTTP sends HTML, which is interpreted, which

then requests style sheets and images.
• Style sheets can be provided with the HTML,

so do that
– Use a content management system so that this

“hardcoding” is manageable

• A simple feature allows images to accompany
the HTML text but it not used
– This feature is used for HTML e-mail

25

API and programmers
• Why do the network APIs allow applications

programmers to do the wrong thing. File I/O is
buffered, why isn't network traffic.

• RPCs look like a function call. Chaining RPCs
makes sense from a network layer, but breaks
the abstraction presented to the programmer
(chained function calls?). We need a new
abstraction for the RPC mechanism, perhaps
similar to parallel programming monitors.

