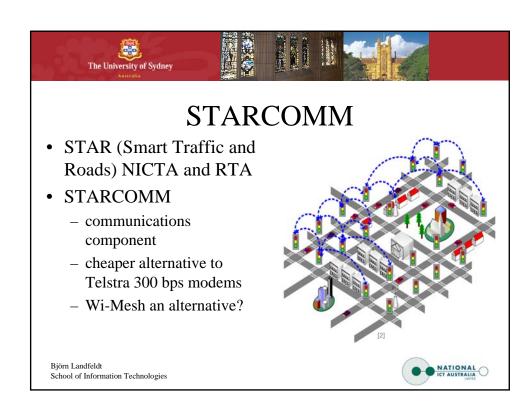
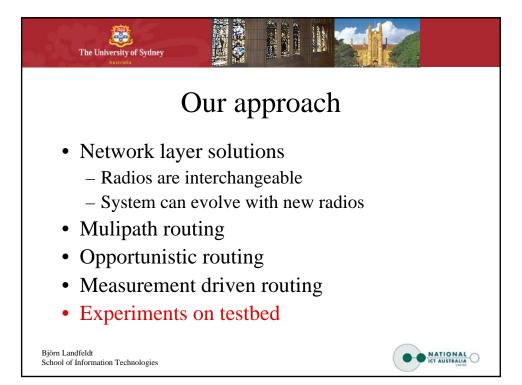


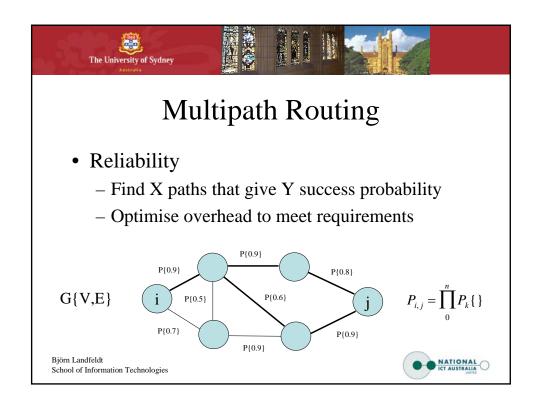
Emerging research in Wireless

Bjorn Landfeldt University of Sydney NICTA

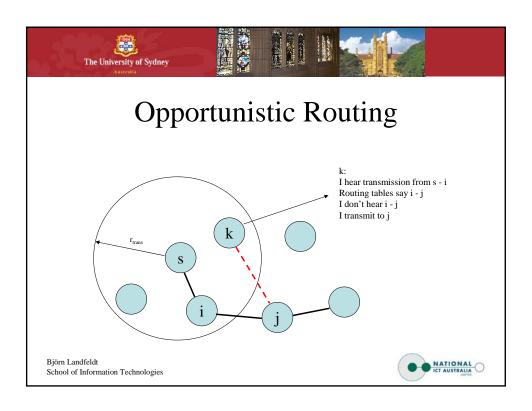
Björn Landfeldt School of Information Technologies

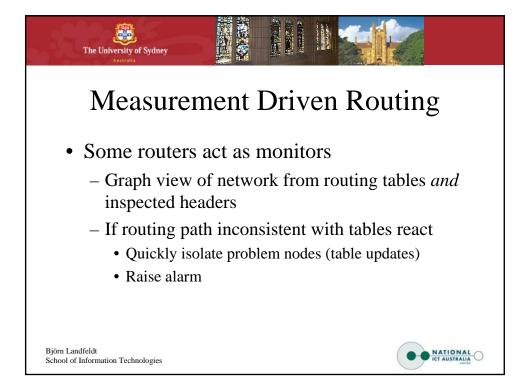


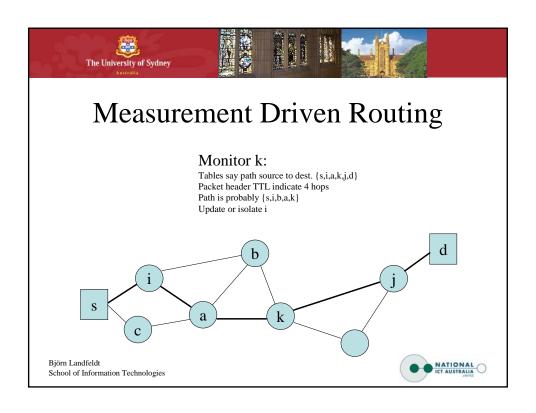


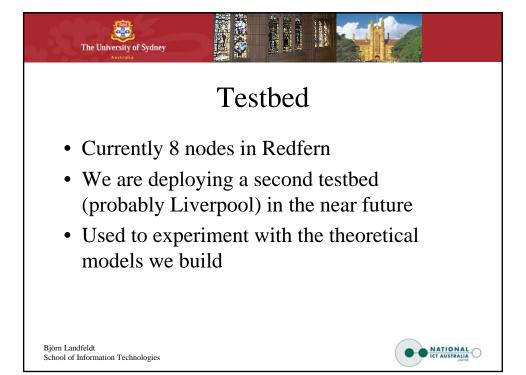

Outline

- Starcomm
 - What we do
 - What we have learned
- Chaotic Networks
 - New collaborative paradigm
 - Where the hard problems are
- Underwater Networks
 - Acoustic and beyond






Opportunistic Routing


- Since radio is broadcast media:
 - Many radios can receive packet
 - If packet delivery fails
 - Other node can step in and forward
 - No need to start from scratch

Channel contention

- Our measurements ~60 APs in one intersection, ~400 wireless nodes at one time (many NOKIA)
- Seminal paper: MOBICOM 2005, "Self-Management in Chaotic Wireless Deployments", Akella et al.

Channel contention

- What does this mean?
 - Many more APs than channels
 - Competition for resources
- In effect, 802.11 starts behaving badly
 - Unreliable service
 - High delay and BW variability
 - QoS sensitive services? Forget it.
- User perceived services will suffer greatly!
- S. Manitpornsut and B. Landfeldt, On the Performance of IEEE 802.11 QoS Mechanisms under Spectrum Competition, In Proc. IWCMC 2006, Montreal Canada 2006

Björn Landfeldt School of Information Technologies

Does this mean WLAN is bad?

- No, but it means we have to rethink how we build WLAN in public settings
- Fundamental problem unlicensed spectrum
 - Chaotic deployments need to be managed, but by whom?
 - Many owners, no single administrator
 - Most owners agnostic
- NETWORK NEEDS TO BECOME SELF MANAGING (NEW PARADIGM)

Hard Problems

- Channel allocation schemes
 - APs monitor environment
 - Algorithms determine optimum allocation to minimise overlap
- Power management
 - Spatial separation
 - If I can do with lower data rate, lower power (modulation rate), we can co-exist
 - Problem: do I still cover the area I want to cover?

Björn Landfeldt School of Information Technologies

Hard Problems

- Distributed collaborative algorithms
 - Need to be dynamic
 - $\ Computationally \ Tractable?$
 - Reinforce with standards? Game theory

"Game Theoretic Approach for Load Balancing in Computational Grids", R. Subrata, A. Zomaya and B. Landfeldt, IEEE Transactions on Parallel and Distributed Systems, in Press

Underwater communications

- Who would be interested?
- Natural sciences
 - Monitoring of underwater ecosystems, marine life behaviour, environmental conditions
- Fisheries
- Structure monitoring
- Defense

Björn Landfeldt School of Information Technologies

Acoustic networks

- Acoustic properties quite well understood, challenges in MAC and above
- Properties
 - Lots of background noise
 - Varying propagation paths and characteristics
 - Long delay
 - Low data rates
 - Varying temperature, thermoclines.....
- Due to extreme properties, like no network on land

Network Issues

- MAC
 - FDMA Not enough BW in UW channel
 - TDMA Too much Doppler, ISI, guard slots needed, poor performance
 - Contention based (CSMA), Long delays, collisions likely - Low Utilisation
 - CDMA can cope with Doppler and delay much better but receiver complex (filtering due to poor channel conditions)

Björn Landfeldt School of Information Technologies

Network Issues

- Network Layer
 - Algorithms for latency bounds
 - Time critical applications
 - Delay tolerant applications
 - Fault tolerant routing
 - Varying channel characteristics
 - Limited BW, flooding?
 - Mobility, UAVs, gliders, drifters etc.

Network Issues

- Transport layer
 - Flow control
 - High delay variance RTT based (TCP) not good
 - Packet loss highly varying
 - ARQ/FEC?
- Cross layer solutions attractive

Björn Landfeldt School of Information Technologies

In Network processing

- Since communication channel limiting
 - Data management important
 - Aggregation
 - Pre-processing
 - Efficient algorithms necessary
 - Application specific
- Ongoing work at USYD and NICTA

Conclusion

- Wireless research is branching out
- There are many new and challenging issues involved in new ways of building wireless systems, new usages etc.
- We gave two very different examples of emerging research areas
- New ways of thinking are required

