

Information Technology Services

Network Registration using "addhost"

- John Mann

Network Infrastructure Services

Monash University

Agenda

- Background
- "addhost" database
- Problems encountered
- Uses for network registration database
- Lessons learnt
- Future

Monash data network

Campuses

- 6 main campuses in Victoria
- ~10 smaller campuses in Victoria
- South Africa
- Malaysia

Edge

- 40,000 Gigabit Ethernet-capable ports
- 420 Wireless Access Points
- 47,000 registered IP addresses

Network Registration in 1994

- Old process to add new computer:
 - Manual edit bootptab
 - Manual edit dept.monash.edu.au forward DNS
 - Manual edit 130.194.NNN reverse DNS
- Averaged 40..45 new machines per week
- Required skill and care to do properly
- "John can't go on holiday" problem

Essential Network Services Project

- Need for always-on "Network Dial-Tone"
- Provide DHCP, DNS, NTP, TFTP
- For a reliable network, we claimed a mandate that everything on network be (pre-)registered
- Committee with wide representation
- Wish-list bloat
 - Inventory of installed programs on each PC
 - Hard disk size, etc
- Search of Usenet lead to "addhost"
 - Acceptable to committee

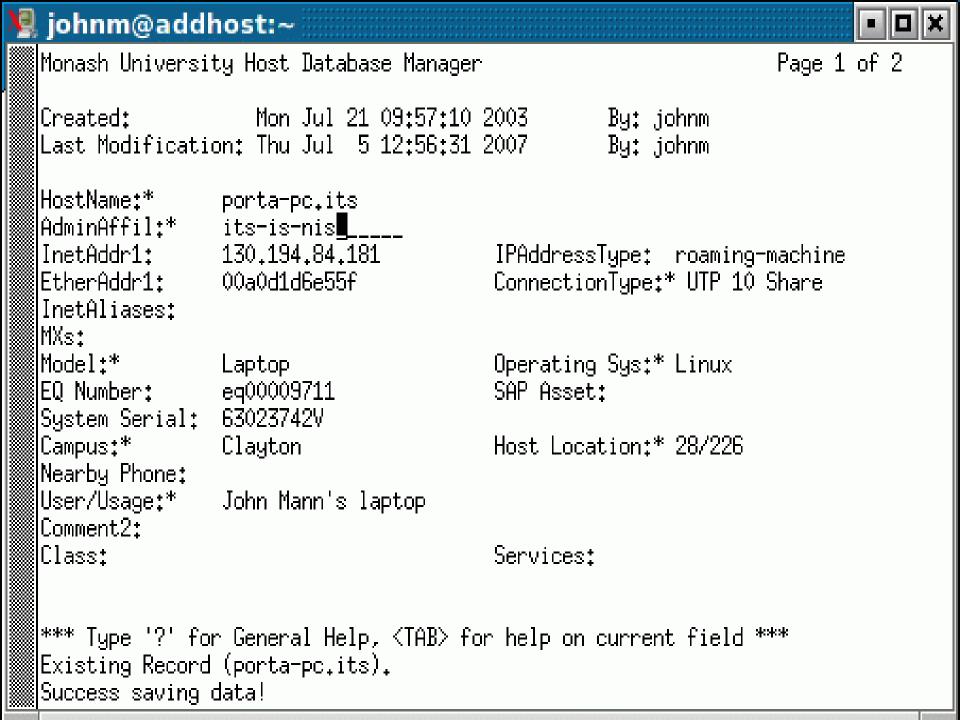
"addhost"

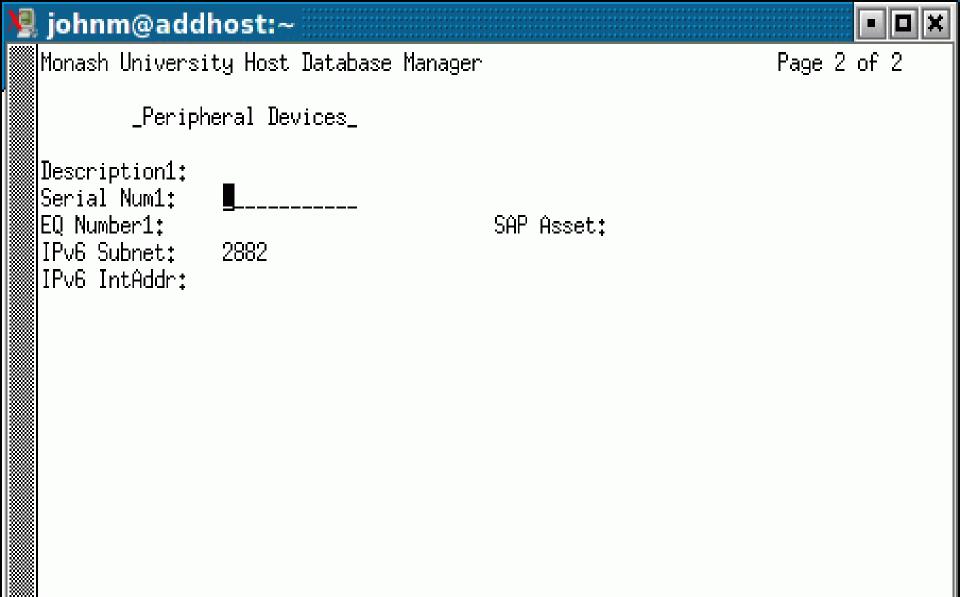
"addhost is a neurses(3) front-end to a Berkley DB database.

Also "rmhost", "baddhost", "brmhost", "dumphost" and "addhostd"

Primary key: hostname and aliases

Secondary keys: IP address, Ethernet address, EQ and Serial numbers


Database entries being viewed are locked from access by others


Low bit-rate UI, usable from anywhere, even Nokia 9000 phone.

From John C. Hardt of University of Colorado, Feb 1994

Still in use: http://www.colorado.edu/its/networking/terminology.html

*** Type '?' for General Help, <TAB> for help on current field *** Existing Record (porta-pc.its).

"addhost" fields

HostName

- Just "host.subdomain"
- Exactly 1 level of subdomain
- Post-processing adds parent domain names

AdminAfil

- Hierachical name space
 - > Subdomain-part-subpart
- Used to control who can add/modify records
- 338 different AdminAfills
- 396 authorized administrators
 - > Training courses run regularly

"addhost" fields

InetAddr1

- Stores the (single) IP address of a host
- Has a "Presto" feature to choose the next available address on a subnet

IPAddressType

- Controls types of DNS and DHCP records generated
- Network behaviour expectations
- Computer identification and location / use fields
- Extra fields to track peripheral, e.g. display screen

Generated files

DNS Zone files

- Builds multiple country domains
 - > Australian IP => .edu and .edu.au
 - > South Africa IP => .edu and .ac.za
 - > Other IP => .edu
- If IPv6 Subnet field, then generate AAAA records
 - > Use registered IPv6 Interface address, or generate from Ethernet address
- Also generates MX entries, reverse zone files
- No CNAME records
- No invalid syntax or missing "." 's

Generated files

DHCP config files

- Creates static IP entries, known and unknown client pools
- Uses a per-subnet template from Subnet Database
- TODO: dhcpv6 config files

other

- Feed to Webnet network monitoring and billing system
- Feed to monIP, monDHCP tools
- RADIUS wireless Ethernet Address authentication
- Ethers files for sniffers (88,700 entries)
- Files generated every 15 minutes during business hours

One Computer = 1 IP = 1 Ether address?

Servers can have multiple NICs

- IP failover or Ethernet teaming
- Extra addhost records for each interface

Computers can have multiple names

- Use InetAliases: field if <6 extras
- Or "master.extra" file for e.g. Central Web farm vhosts

Routers have many Interfaces

- A script adds/removes per-interface addhost records
- Also extra router-all name giving all IPs of router.

Laptops have wired and wireless interfaces

Treat as 2 separate devices (YUK)

Dynamic DNS?

WINS was a disaster

 Showed that end-users couldn't be trusted to name their own machines. Many called "SERVER", "WWW" ...

Administrator knows best

- Central management, not end-user
- Tracking and accountability for billing

Microsoft Active Directory

Tolerated, but not part of the official DNS tree

Missing:

 Would be nice to find IP of roaming clients, without churning the addhost database et al too much

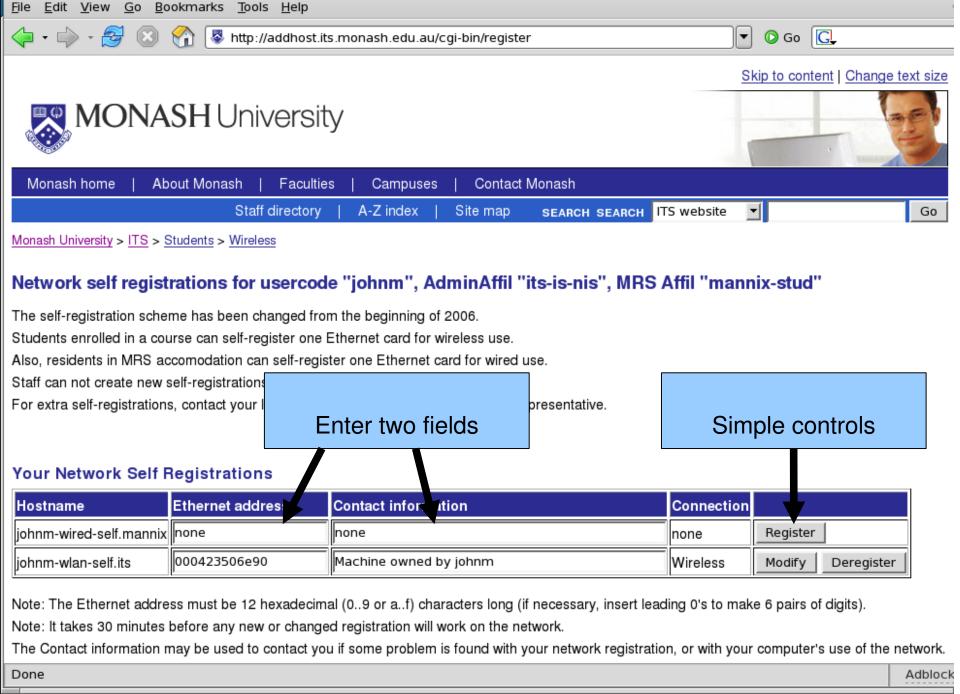
Student-owned computers in Residences?

1000 network ports were installed in student residences

- Students want to add computers out-of-hours
- Students move rooms, change/swap computers frequently
- Huge influx at beginning of each semester
- Need to de-register computers when students move out

Assign static IP to each room ?

- Required too much skill from each resident
- Address collisions were frequent and very hard to resolve
- Created Self-Registration Web page



Student Wireless laptops?

Problem:

- Didn't want to burden ITS or Faculty helpdesks with registering student laptops
- Need to bill correct Faculty for student's wireless access
 - > But Faculty want to limit potential costs
- Student wireless devices change a lot
- Need to track when student leaves, and de-register computers
- Allowed all students to use the Network Self-Registration system to register 1 device

🐸 Self registration (ITS) - Mozilla Firefox

- 0

Network Self-Registration

Registration is billed to student's current Faculty or Residence

Script checks every night, and changes AdminAfil when necessary

A registration is deleted

- When a student stops being a resident, or stops studying
- If a new registration is not used within 30 days
- If a old registration is no used for 180 days
- An e-mail is sent to the user explaining what happened and why

Use - Everything is Registered

No name or address collisions when adding something

- Users can't grab a router's or a reserved IP addresses
- Can't double-register the same name, MAC, serial or EQ number

Network sniffing

- Ethernet address -> Name
- IP address -> Name
- One Spanning-tree packet tells you which port you are plugged into, and if the network is partitioned
- Useful Ethernet addresses have been registered, e.g.
 HSRP, IP Multicast, spanning-tree, CDP, Windows PPP

Example "where am I" packet sniffs

```
# tcpdump -e -X -vv ether dst spantree.net
10:20:52.494367 clay-28-202-rk2-fes1.net:3/0/4 > spantree.net, <...>
0x0000: 4242 0300 0002 023c 0054 0015 c77b 4400 BB....<.T...{D.
0x0010: 0000 0007 8054 000e 8464 6600 806c 0300 .....T...df..l..
0x0020: 1400 0200 0f00 0000 0000 0000 ......
```

Looking up Ethernet addresses inside packets gives:

snoop.pl -i eth1

BPDU from 000ab8fd1684(clay-28-202-rk2-fes1.net:3/0/4) bridge 000e84646600 (clay-28-202-rk2-fes1.net) port 108 root 0015c77b4400(west1-gw.net)

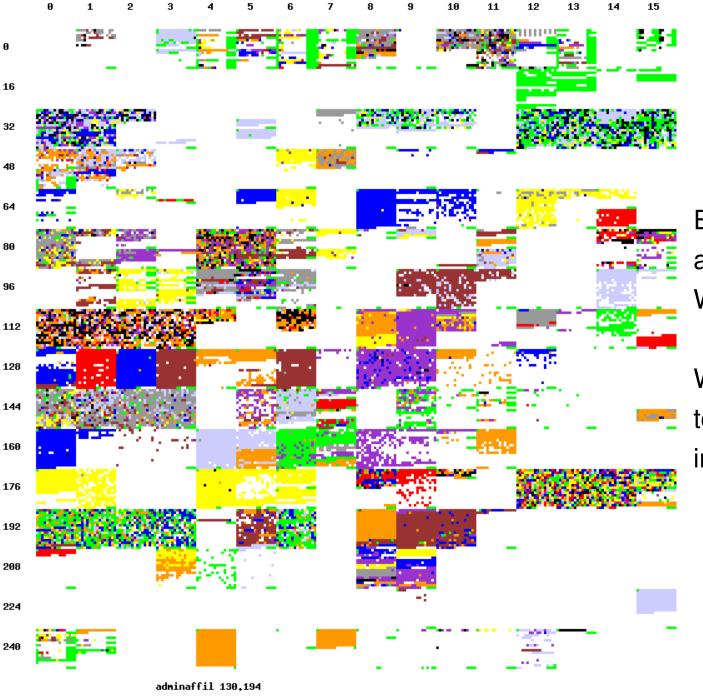
CDP from 000ab8fd1684(clay-28-202-rk2-fes1.net:3/0/4) dev clay-28-202-rk2-fes1.net.monash.edu.au port GigabitEthernet3/0/4 VLAN 84

Use - Fault finding

When something is going wrong

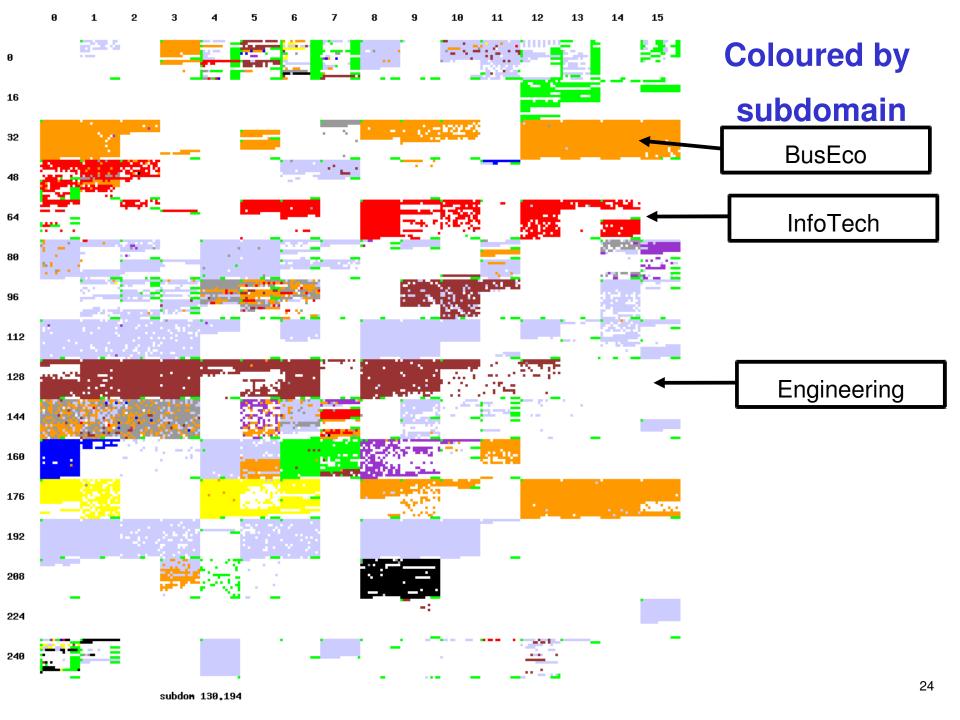
- Computer has a virus
- Someone is downloading things they shouldn't

It is incredibly useful to know


- Which computer is sending the bad traffic
- Who added that machine to the network
- What the machine's purpose is
- Where is is
- Possibly a nearby phone number

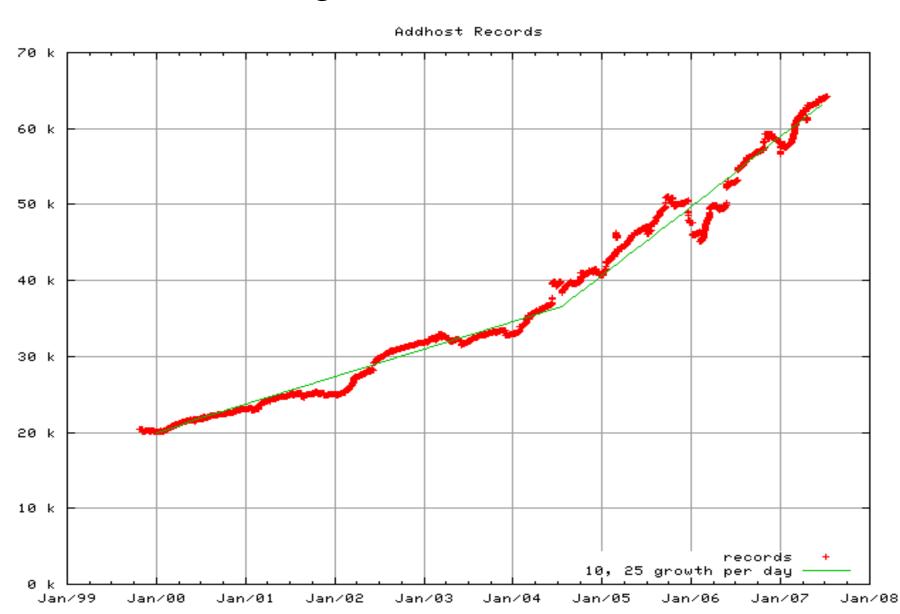
Use – Managing Address Plan

- Can create reports of subnet utilization
- Can create pictures of IP address space coloured by
 - AdminAffil (who manages / pays for the IP)
 - Subdomain name
 - IP address type (static / DHCP / roaming)
 - How recently seen on network



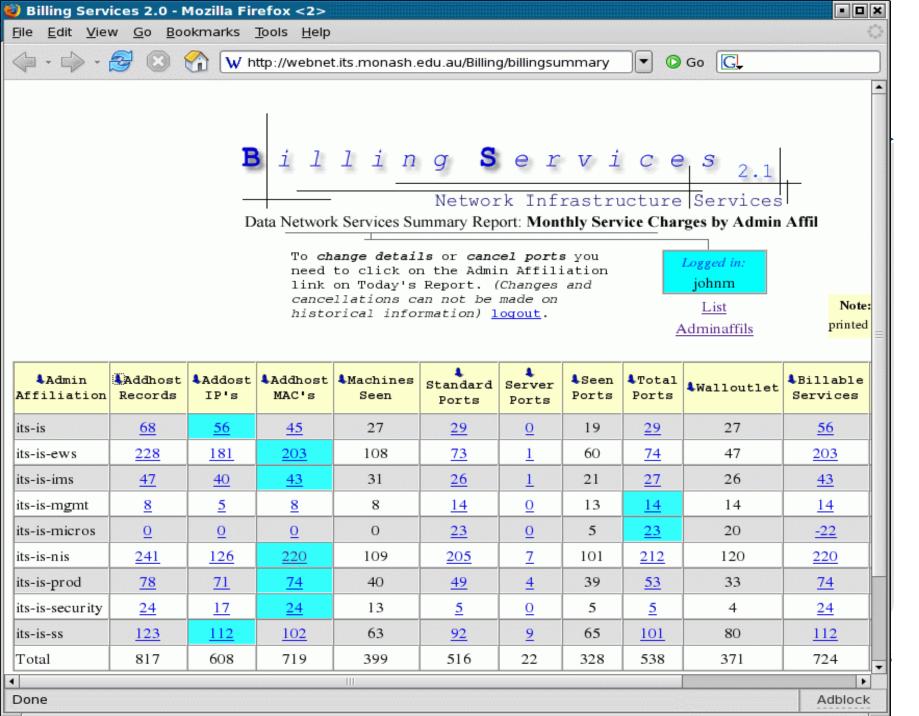
Coloured by AdminAffil

Each square is 256 addresses.


Whole picture is a /16

Web page can drill in to /24, and then to individual addresses

iptype 172,19


Use – Planning for Growth

Use - Billing

- At Monash, we have a "Network Access Charge" for a
 - Registered IP address, and/or
 - Registered Ethernet address, and/or
 - Wall outlet switch port
- We take the largest count of these numbers per AdminAffil and multiply by the monthly charge

"A Database is only a reflection of reality, it isn't reality" - Keith Lewis

- Some changes to database can effect real world
 - Change DHCP-assigned IP address
- But users can change reality to be different from database
 - Student sells wireless card to friend
 - PC is hard-coded to new IP address or server is given a secondary IP address
- Can be difficult to find and fix discrepancies

"Any database that doesn't have some system to keep it updated will rot and become useless" - Stephen Dart

- Mechanisms:
 - Monitor reality and feed back updates closed loop
 - Monitor reality and raise alarms open loop
 - If entry bad or not in database, your PC won't work
 - Encourage cleanups by charging for entries, even if computer has gone.
- Real-time database update syntax checking
- Periodic consistency checking
 - Feedback from file generation, ARP and DHCP logs
 - Nag e-mails every 30 mins up to daily

Some fields were created, but not used

- Insufficient effort was put in to entering data, keeping it up to date, using the data – lack of business drivers
- Avoid replicating data that is/should be in a different database, such as installed software or lease tracking.
 - > Link to other databases using common key
- Fully-specified unique keys are best
 - A "WallOutlet" field failed partly because it only specified a port relative to a wiring rack, not globally across all of Monash. (There were 3 "C1" ports on my floor)
- Start with only a few fields, add more when necessary

A database can be useful even if it can't hold 100% of all possible records

- A small number of exceptions, or classes of exceptions, can be handled by some "extras" glued on around the database
- "addhost" only holds 98% of DNS
- "addhost" doesn't have Ethernet addresses of individual switch ports

Future

Web-based front end

- Am to use AJAX for verifying uniqueness of entered data and for enforcing required syntax
- Still prevent multiple concurrent updates to same record

PostgreSQL back end

 Move onto same database as other network management and monitoring tools

IPv6 enhancements

- IPv6=YES will lookup IPv6 subnet based on IPv4 address
- DHCPv6

Hardware

addhost

- Hosts the database
- All department admins have access

ns0a

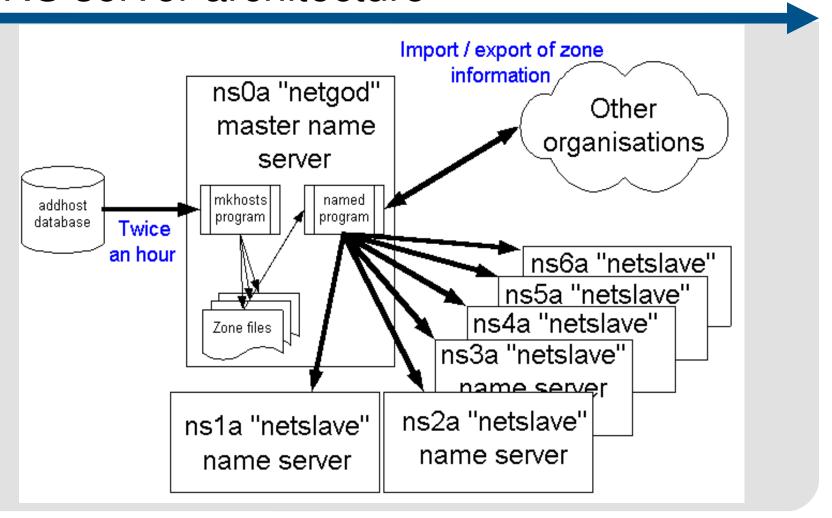
- Network management and control master
- Only ITS network staff
- ns1a ... ns6a, ns3, ns8, ns9
 - Slave machines
 - No user logons
- nsaa, ns7a
 - Development, research slave machines

Resilience model

Pairs of DHCP servers

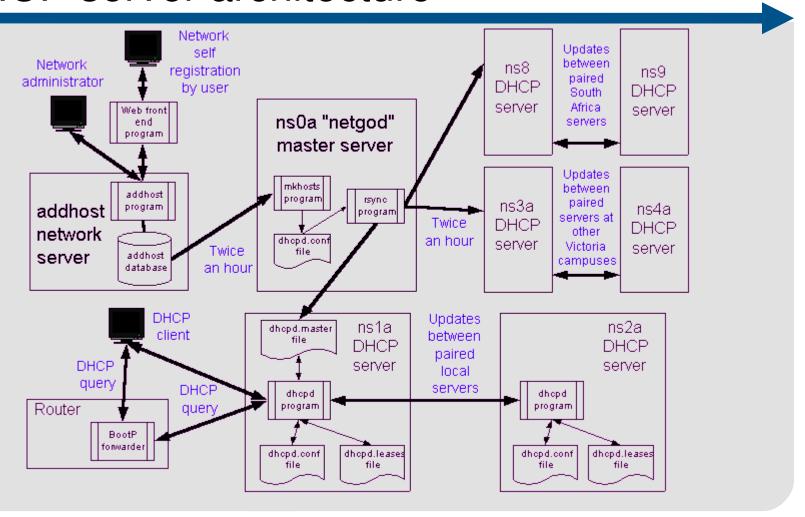
- Clayton one per data centre
- Other Australia Gippsland + Caulfield
- Research one + development box
- South Africa 2 blade servers

Farms of anycast DNS servers


- 130.194.1.99 4 machines
- 130.194.7.99 2 machines

Servers are dual-power with RAID disks

- Common software, config and data files for consistency and to ease administration
- But, susceptible to common-mode failures



DNS server architecture

DHCP server architecture

Coping with disasters

Network catastrophe

- Monash falls off network or AARNet breaks
- ns3 is on a Rackspace.com server along with top few levels of Monash's staic Web tree.
- ssh to there, update DNS manually, push to secondaries