

Securing the Open-Access Network – Best Practices

Mark Williams Liaison, Academic Networking - Asia Pacific

Copyright © 2007 Juniper Networks, Inc.

Proprietary and Confidentia

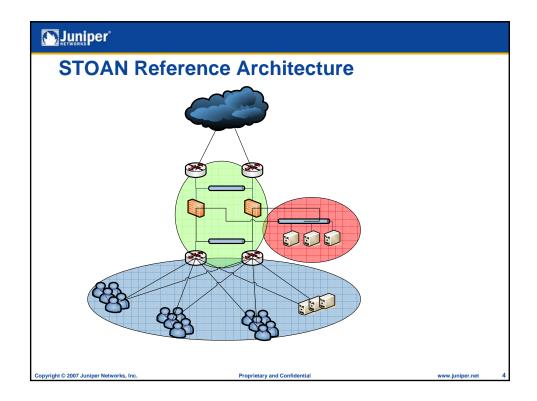
www.juniper.ne

- What is STOAN All About?
- STOAN Architecture
- Best Practices 1: Traffic Baseline
- Best Practices 2: DoS Mitigation
- Case Study

Copyright © 2007 Juniper Networks, Inc.

Proprietary and Confidentia

www.juniper.ne


What's STOAN About?

- STOAN is about perimeter security for Networks where policy at the perimeter is "default allow"
 - There may be tighter policies enforced inside the perimeter for sub-parts of the network.
- STOAN is about "Clean Pipes"
 Drop "undeniably unwanted" traffic

 - Police "control plane" traffic (DoS Mitigation)
- "Border of Liability" Stop known attacks from getting out.
 - · Log activity in accordance with policy/laws.
- STOAN is about availability.
 - Build a network perimeter that can't be "taken out".
 - Build a network perimeter that is robust in the face of equipment failure.
- STOAN is about visibility and manageability
 - Know what is happening across the network perimeter.
 - Give NOC personnel robust and convenient tools for monitoring and controlling the network perimeter.

Copyright © 2007 Juniper Networks, Inc.

Proprietary and Confidential

Best Practice 1: Traffic Baseline Copyright © 2007 Juniper Networks, Inc. Proprietary and Confidential www.juniper.net 5

What the Baseline Should Tell you

- What is my overall network utilisation?
- What is the makeup of my network utilisation?
 - Protocols?
 - Time of day?
 - Which Subnets?
 - Where is the traffic coming from and where is it going?
- How much of this traffic is business critical?
- What is the threat level of my network?

Copyright © 2007 Juniper Networks, Inc.

Proprietary and Confidential

ww.juniper.net

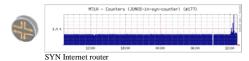
Knowing what's Normal in your Network

Knowing normal behavior for your network is crucial to understanding how to detect and block abnormal behavior such as floods. Data should be recorded at both the router and the firewall using tools such as:

ACL Counters Firewall Logs / Counters X-Flow Data Session Table Size / Rate MRTG / SNMP FW Reports

What you should know:

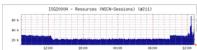
% ICMP Normal Sessions / Sec Peak % UDP Normal **Total Sessions Peak** % TCP Control Normal Session Distribution by Proto **Protocol Distribution** Session Usage per IP Interface Bandwidth Firewalls "Ramp-Rate" *


* A Firewalls Ramp-Rate is the measurement of how quickly it can setup new sessions, this will differ depending on the Model of the Firewall and its specific configuration. This number is usually provided on the Marketing Datashee

Copyright © 2007 Juniper Networks, Inc.

Proprietary and Confidential

Knowing what's Normal in your Network



Monitor bandwidth utilization

- Use SNMP tools like MRTG
- · Collect both BPS and PPS Monitor session table and rate
- · "get perf ses det" "get ses info" Enable SCREEN protections
- "get count screen zone X"
- "get zone X screen session" Optional firewall traffic logs

Monitor bandwidth utilization

- Use SNMP tools like MRTG
- · Collect both BPS and PPS Implement counting ACLs
- TCP flags: SYN, FIN, RST
- DNS queries
- ICMP errors
- IP options
- IP fragments Optional J-Flow data

Internet firewall A sessions

Proprietary and Confidential

Baseline Assumptions

Although Every Network is different, some general assumptions can be made for detecting abnormal behavior with routers alone, such as:

- •TCP control packets such as SYNs and RSTs should not comprise more then 5% each of my bandwidth in normal circumstances
- •ICMP should not exceed 1% of my bandwidth in normal circumstances
- •Certain ICMP types (such as unreachable) should not exceed 1% of my bandwidth
- •IP Fragments should not exceed 1% of my bandwidth in normal circumstances
- •Packets with IP options should not exceed 1% of my bandwidth

Copyright © 2007 Juniper Networks, Inc.

Proprietary and Confidential

www.juniper.r

Best Practice 2: Denial of Service Mitigation

Copyright © 2007 Juniper Networks, Inc.

Proprietary and Confidential

www.juniper.net

Goal: Optimize each device for its purpose

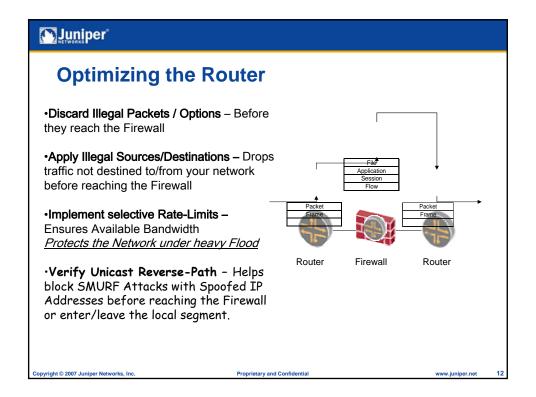
Device Layer Optimized For
Flow Inspection
Deep Inspection
Packet Inspection

Frame Inspection

SCREENs, Session Limits Syn-Cookie

Line-Rate ACLs Rate-Limits

DoS Protections


Routers are Optimized to process packets at Layer 2-4 at very high speeds; however they have no visibility into "flows" or "sessions" <u>As a result, all packets can be processed at equally high speed.</u>

Firewalls are Optimized to process packets at Layer 4-7 using technologies such as State full Inspection to examine flows and relate them to Sessions. As a result, new sessions through the Firewall require extra processing, some of which is done in Software. As a result different types of packets are processed at different speeds some requiring more Firewall CPU, such as during a Session Setup and Teardown.

Copyright © 2007 Juniper Networks, Inc

Proprietary and Confidential

www.juniper.net

Border Router Requrements

- · Line-Rate ACLs
- · Layer 4 Visibility

· Agile ACLs

- · Dedicated Routing Engine
- · Line-Rate Policers

Copyright © 2007 Junipe

www.juniper.net

12

Juniper

How the Router can help - Rate Limits

Rate Limits used to protect ISG2000 Firewall

Limit ICMP to 0.2% BW – Helps reduce the burden of large ICMP Floods on the Firewall Limit TCP SYNs 5% BW – Helps reduce the burden of SYN Floods on the Firewall Limit TCP RST/FIN 5% BW – Helps reduce the burden of RST/FIN Floods on the Firewall Limit IP Fragments to 1% BW – Helps reduce the burden of IP Fragments on the Firewall Limit Other IP Protocols to 1% BW – Eliminated other Protocols from consuming all bandwidth

JunOS Policers Configlet (Assumes 1GB Uplink)

set firewall policer one-percent if-exceeding bandwidth-limit 10m set firewall policer one-percent if-exceeding burst-size-limit 100k set firewall policer one-percent then forwarding-class network-control set firewall policer point-2-percent if-exceeding bandwidth-limit 2m set firewall policer point-2-percent if-exceeding burst-size-limit 50k set firewall policer point-2-percent then discard set firewall policer five-percent if-exceeding bandwidth-limit 50m set firewall policer five-percent if-exceeding burst-size-limit 150k set firewall policer five-percent then discard

Copyright © 2007 Juniper Networks, Inc.

Proprietary and Confidential

www.juniper.net

Optimizing the Firewall SCREENs

Configure based on Traffic Baseline

Firewall FLOW Settings:

- •Enable TCP-SYN Checking
 - •Prevents Session creation for illegal Packets
- •Enable TCP-Sequence # Checking
 - •Drops Illegal/Duplicate Packets
- •Enable TCP-RST-Sequence checking
 Drops Illegal/Dupicate RST Packets
- Enable Syn-Proxy Syn-Cookie

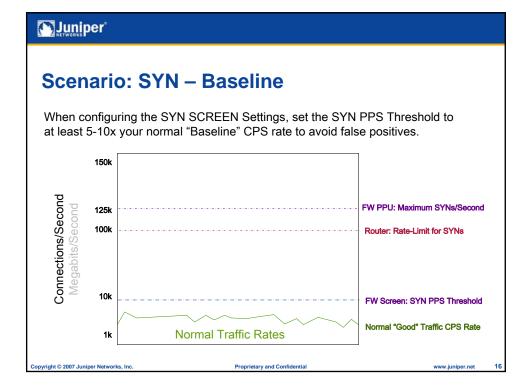
Prevents Session Creation on SYN Performed in PPU on NetScreen ISG and 5000 Systems

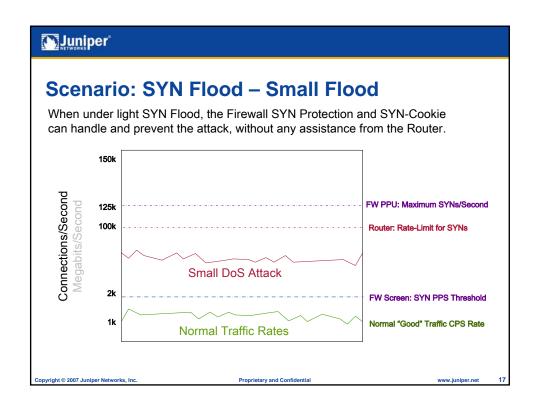
ISG-2000 5.4r1 SCREEN Thresholds used in STOAN Solution

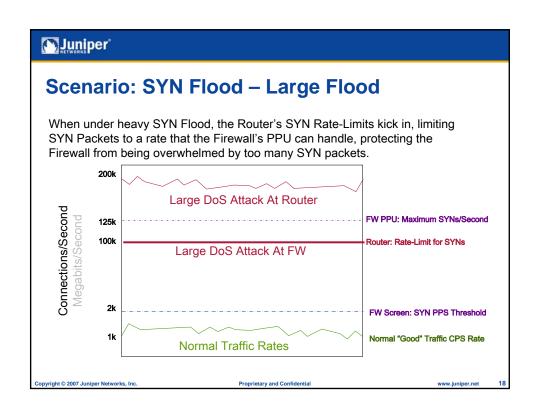
SYNFlood – Threshold 10000 PPS Src & Dst Threshold 250 PPS

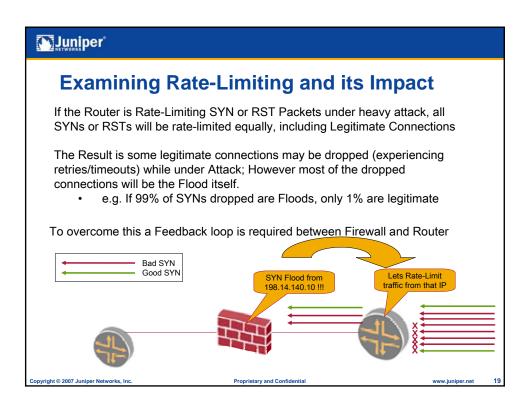
UDP Flood - Threshold 10,000 PPS ICMP Flood - Threshold 1,000 PPS

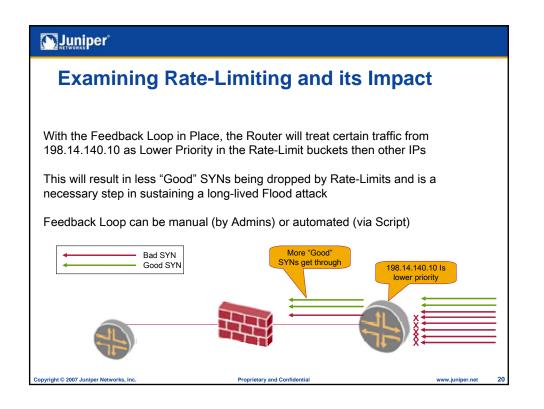
Session Limits – Per Source: 1,000 Per Dest: 10,000

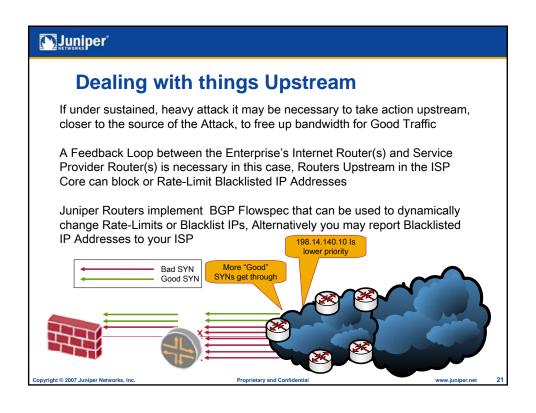

Enable All specific DoS Defenses

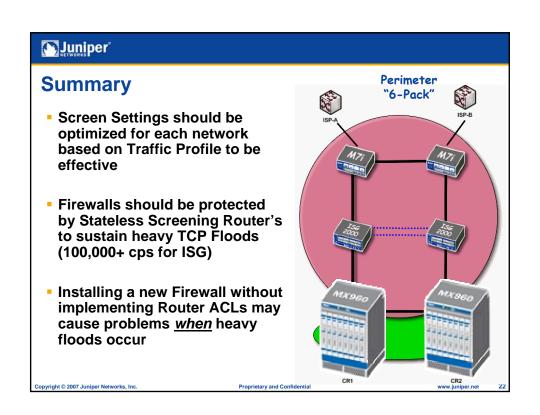

Enable IP & TCP Protocol Anomalies SCREENs

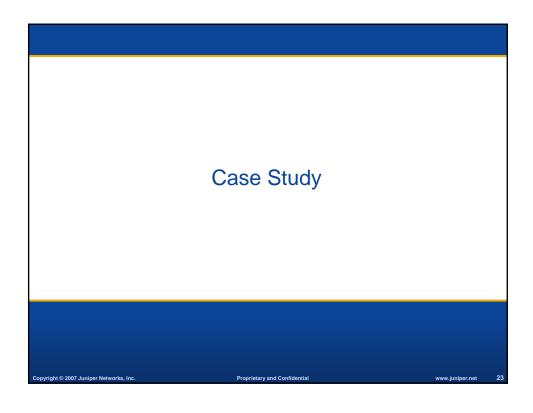

Copyright © 2007 Juniper Networks, Inc.

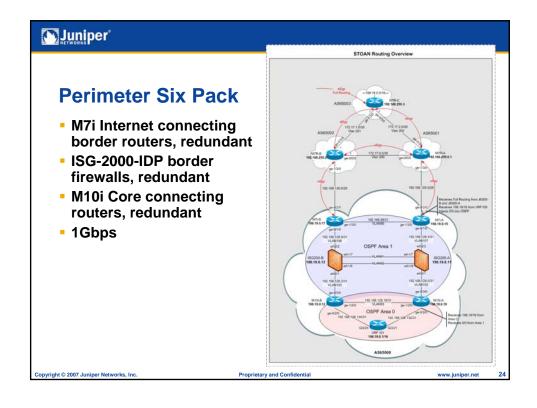

Proprietary and Confidential


www.juniper.net









JUNOS Counting Filter Config

- 1. set firewall filter in term 1frag from first-fragment
- set firewall filter in term 1frag then count 1frag
- 3. set firewall filter in term 1frag then next term
- 4. set firewall filter in term 2frag from is-fragment
- 5. set firewall filter in term 2frag from is-fragment
- 6. set firewall filter in term 2frag then next term
- 7. set firewall filter in term option from ip-options any
- 8. set firewall filter in term option then count option
- 9. set firewall filter in term option then next term
- 10. set firewall filter in term ping from protocol icmp
- 11. set firewall filter in term ping from icmp-type echo-
- 12. set firewall filter in term ping from icmp-type echo-reply
- 13. set firewall filter in term ping then count ping
- 14. set firewall filter in term ping then next term
- 15. set firewall filter in term icmp from protocol icmp
- 16. set firewall filter in term icmp then count icmp
- 17. set firewall filter in term syn from protocol tcp
- 18. set firewall filter in term syn from tcp-flags syn
- 19. set firewall filter in term syn then count syn
- 20. set firewall filter in term synack from protocol tcp

- 21. set firewall filter in term synack from tcp-flags "(syn & ack)"
- 22. set firewall filter in term synack then count synack
- 23. set firewall filter in term fin from protocol tcp
- 24. set firewall filter in term fin from tcp-flags fin
- 25. set firewall filter in term fin then count fin
- 26. set firewall filter in term rst from protocol tcp
- 27. set firewall filter in term rst from tcp-flags rst
- 28. set firewall filter in term rst then count rst
- 29. set firewall filter in term dns from protocol udp
- 30. set firewall filter in term dns from protocol dap
- 31. set firewall filter in term dns then count dns
- 32. set firewall filter in term other from protocol-except tcp
- 33. set firewall filter in term other from protocol-except udp
 34. set firewall filter in term other from protocol-except ah
- 35. set firewall filter in term other from protocol-except an
- 36. set firewall filter in term other from protocol-except gre
- 37. set firewall filter in term other then count other
- 38. set firewall filter in term default-permit then accept

Copyright © 2007 Juniper Networks, Inc.

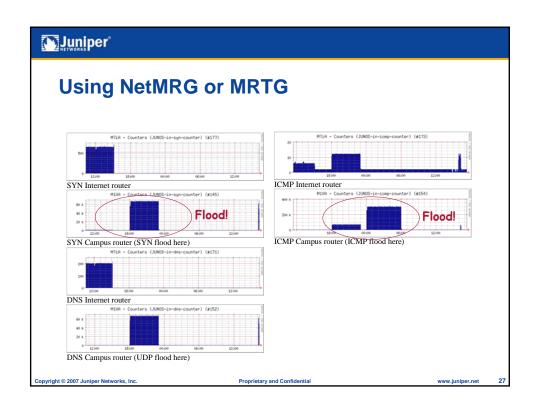
Proprietary and Confidential

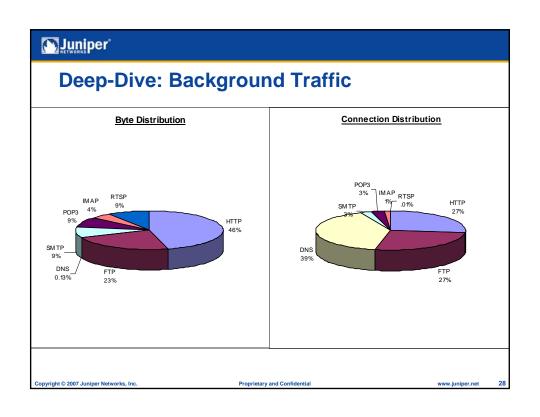
www.juniper.net

25

SCREENOS Config

- 1. set zone "Internet" screen icmp-flood
- 2. set zone Internet screen icmp-flood threshold 1000
- 3. set zone "Internet" screen udp-flood
- 4. set zone "Internet" screen udp-flood threshold 10000
- 5. set zone "Internet" screen syn-flood
- 6. set zone "Internet" screen syn-flood alarm-threshold 10000
- set zone "Internet" screen syn-flood queue-size 20000
- set zone "Internet" screen syn-flood attack-threshold 10000
 set zone "Internet" screen syn-flood
- source-threshold 500


 10. set zone "Internet" screen syn-flood destination-threshold 500
- 11. set zone "Internet" screen limit-session source-ip-based 10000
- 12. set zone "Internet" screen limit-session destination-ip-based 10000


- 13. set zone "Internet" screen port-scan
- 14. set zone "Internet" screen port-scan threshold 100000
- 15. set zone "Internet" screen ip-sweep
- 16. set zone "Internet" screen ip-sweep threshold 100000

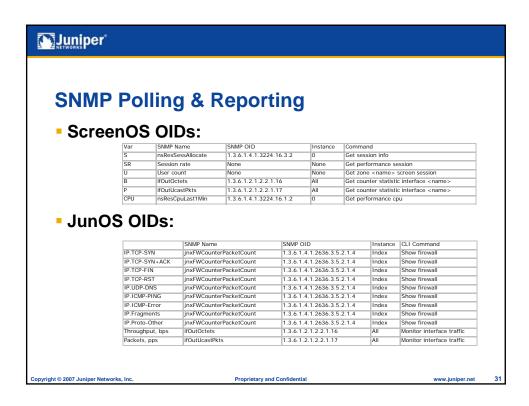
Copyright © 2007 Juniper Networks, Inc

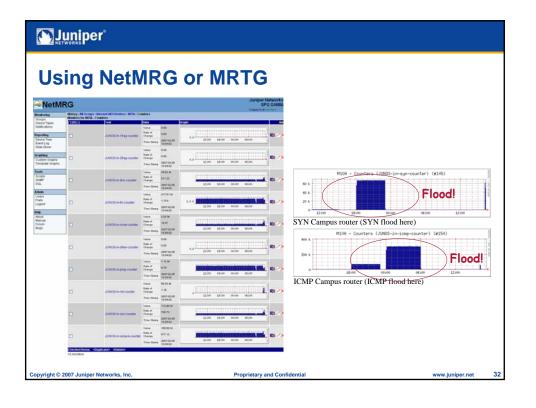
Proprietary and Confidential

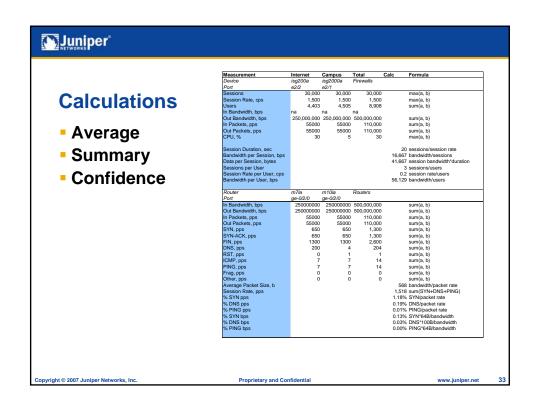
www.juniper.net

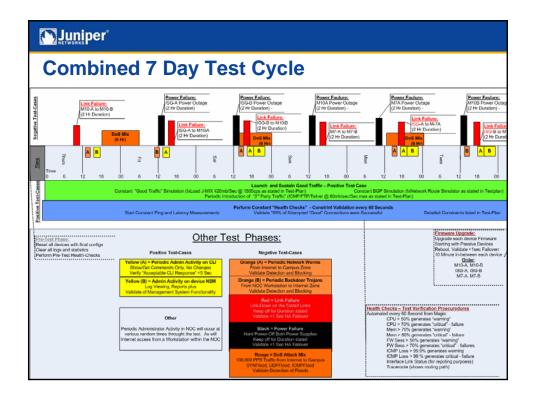
JMIX

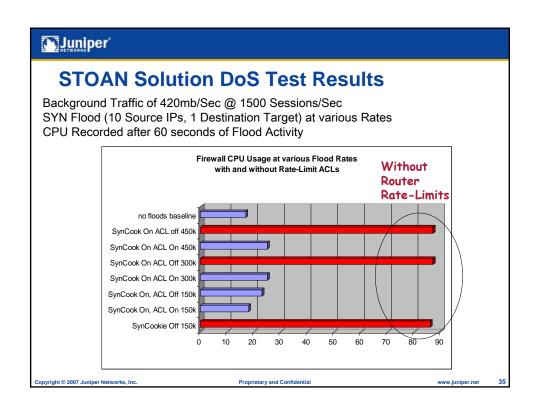
DNS, HTTP, FTP, SMTP, IMAP, POP3, RTSP


- Background Traffic (using IxLoad)
 - 1700 Sessions/Second Bidirectional
 - 420Mb/Second Bidirectional
 - Mix of 7 Common Protocols
 - Validate 99.9% of Attempted Connections Established


Copyright © 2007 Juniper Networks, Inc.


Proprietary and Confidential


www.juniper.net


| Deep-Dive: Background Traffic | Protocol | F Clients | F Servers | Fan-Out | CPS Rate | Avg Duration | F liesize | Avg bps | Avg Throughput | HTTP | 4000 | 20000 | 5 | 200 | R Seconds | 64k | 10100064 | 86.32 Mb/Sec | FTP | 4000 | 20000 | 5 | 200 | T Seconds | 128 byte | 50372142.5 | 48.04 Mb/Sec | DNS | 4000 | 20000 | 5 | 300 | T Seconds | 128 byte | 50372142.5 | 48.04 Mb/Sec | SMTP | 4000 | 4000 | 1 | 2014 Seconds | 130k | 19655189 | 18.78 Mb/Sec | MAP | 4000 | 4000 | 1 | 2014 Seconds | 130k | 19655189 | 18.78 Mb/Sec | MAP | 4000 | 4000 | 1 | 1 | 0.18 Seconds | 130k | 19655189 | 18.78 Mb/Sec | MAP | 4000 | 4000 | 1 | 1 | 0.18 Seconds | 130k | 19655189 | 18.78 Mb/Sec | May | 4000 | 4000 | 1 | 1 | 0.18 Seconds | 130k | 19655189 | 18.78 Mb/Sec | May | 4000 | 4000 | 1 | 1 | 0.18 Seconds | 130k | 19655189 | 18.78 Mb/Sec | May | 4000 | 4000 | 1 | 1 | 0.18 Seconds | 130k | 19655189 | 18.78 Mb/Sec | May | 4000 | 4000 | 1 | 1 | 0.18 Seconds | 130k | 19655189 | 18.78 Mb/Sec | May | 4000 | 4000 | 1 | 1 | 0.18 Seconds | 130k | 19655189 | 18.78 Mb/Sec | May | 4000 | 4000 | 1 | 1 | 0.18 Seconds | 130k | 19655189 | 18.78 Mb/Sec | May | 4000 | 800 | 0.2 | 200 | R Seconds | 64k | 200 | 4000 |

